
—
ABB ME A SUREMENT & ANALY TICS | DATA SHEET

Overview of the IEC 61131 standard
XSeries products

2 OV E RV I E W O F TH E I EC 611 3 1 S TA N DA R D X SER I E S PR O D U C TS | DS/2 101 1 2 7- EN

—
Introduction

IEC 61131-3 is the first real endeavor to standardize
programming languages for industrial automation. With its
worldwide support, it is independent of any single company.
IEC 61131-3 standard is the result of a task force (IEC TC65
SC655B) comprised of seven or more international companies,
representing several decades of experience in the field of
industrial automation.

—
The IEC 61131-3 standard

The standard, 200 pages of text, with over 60 features tables,
specifies the syntax and semantics of a unified suit of
programming languages and a structuring language. It is
organized as:

• Part 1 General Overview
• Part 2 Hardware
• Part 3 Programming Languages
• Part 4 User Guidelines
• Part 5 Communication

One way to view the standard is by splitting it into two parts:
1. Common elements
2. Programming languages

Common
elements

Programming languages

—
Common elements

Data typing
Within the common elements, the data types are defined. Data
typing prevents errors in an early stage. It is used to define the
type of any parameter used. This avoids, for instance, dividing
a Date by an Integer. Common data types are Boolean, Integer,
Real, Byte and Word, but also Date, Time-of-Day and String.
Based on these, one can define their own personal data types,
known as derived data types. In this way one can define an
analog input channel as a data type, and re-use this over an
over again.

Variables
Variables are only assigned to explicit hardware addresses
(e.g. input and outputs) in configurations, resources or
programs. In this way a high level of hardware independence is
created, supporting the re-usability of the software. The
scope of the variables is normally limited to the organization
unit in which they are declared, e.g. local. This means that their
names can be reused in other parts without any conflict,
eliminating another source of errors, e.g. the scratch pad. If
the variables should have global scope, they have to be
declared as such (VAR_GLOBAL). Parameters can be assigned
an initial value at start up and cold restart, in order to begin
with the correct value.

3OV E RV I E W O F TH E I EC 611 3 1 S TA N DA R D X SER I E S PR O D U C TS | DS/2 101 1 2 7- EN

Configuration, resources and tasks
To understand these better, let us look at the software model,
as defined in the standard. At the highest level, the entire
software required to solve a particular control problem can
be formulated as a Configuration. A configuration is specific
to a particular type of control system, including the
arrangement of the hardware, i.e. processing resources,
memory addresses for I/O channels and system capabilities.

Within a configuration one can define one or more Resources.
One can look at a resource as a processing facility that is able
to execute IEC programs. Within a resource, one or more
Tasks can be defined. Tasks control the execution of a set of
programs and/or function blocks. These can either be
executed periodically or upon the occurrence of a specified
trigger, such as the change of a variable.

Programs are built from a number of different software
elements written in any of the IEC defined languages.
Typically, a program consists of a network of Functions and
Function Blocks, which are able to exchange data. Function
and Function Blocks are the basic building blocks, containing
a data structure and an algorithm.

Let’s compare this to a conventional PLC: this contains one
resource, running one task, controlling one program, running
in a closed loop. IEC 61131-3 adds much to this, making it open
to systems involving multi-processing and event driven
programs, which are properties required in more complex
distributed systems and real-time control systems. IEC 61131-3
is suitable for a broad range of applications, without having to
learn additional programming languages.

Access path

Execution
control path

FBTask

Program Program

FB FB

Task

Program

Task

Program

FB FB

Task

Configuration

Function
Block

Resource Resource

4 OV E RV I E W O F TH E I EC 611 3 1 S TA N DA R D X SER I E S PR O D U C TS | DS/2 101 1 2 7- EN

—
Program organization units

Within IEC 61131-3, the Programs, Function Blocks and
Functions are called Program Organization Units, POUs.

Functions
IEC includes defined standard functions and supports user
defined functions. Standard functions are for instance ADD
(addition), ABS (absolute), SQRT, SIN and COS. User defined
functions, once defined, can be used over and over again.

Function Blocks, FBs
Function Blocks are the equivalent to Integrated Circuits, ICs,
representing a specialized control function. They contain data
as well as an algorithm. They have a well-defined interface and
hidden internals, like an IC or black box. In this way they give a
clear separation between different levels of programmers, or
maintenance people. With these characteristics, Functions
and Function Blocks reflect best practices as embraced by
object-oriented principles.

A temperature control loop, or PID, is an excellent example of a
Function Block. Once defined, it can be used over and over
again, in the same program, different programs, or even
different projects. This makes them highly re-usable. Function
Blocks can be written in any of the IEC languages, and in most
cases even in “C”. It this way they can be defined by the user.
Derived Function Blocks are based on the standard defined
FBs. Completely new, customized FBs are also possible within
the standard.

Programs
With the above-mentioned basic building blocks, one can
say that a program is a network of Functions and Function
Blocks. A program can be written in any of the defined
programming languages.

N FILL

S Empty

Transition 2

Transition 1

Step 1

Step 2

Step 3

Sequential Function Chart, SFC
SFC graphically describes the sequential behavior of a control
program. It is derived from Petri Nets and IEC 848 Grafcet,
with the changes necessary to convert the representation
from a documentationstandard to a set of execution control
elements.

SFC structures the internal organization of a program, and
helps to decompose a control problem into manageable parts,
while maintaining the overview. SFC consists of Steps, linked
with Action Blocks and Transitions. Each step represents a
particular state of the systems being controlled. A transition
is associated with a condition, which, when true, causes the
step before the transition to be deactivated, and the next step
to be activated. Steps are linked to action blocks, performing
a certain control action.

Each element can be programmed in any of the IEC languages,
including SFC itself.

One can use alternative sequences and even parallel
sequences, such as commonly required in batch applications.
For instance, one sequence is used for the primary process,
and the second for monitoring the overall operating
constraints.

 Because of its general structure, SFC also provides a
communication and documentation tool, combining people
of different backgrounds, departments or countries.

5OV E RV I E W O F TH E I EC 611 3 1 S TA N DA R D X SER I E S PR O D U C TS | DS/2 101 1 2 7- EN

—
Programming languages

Within the standard four programming languages are defined.
This means that their syntax and semantics have been
defined, leaving no room for dialects. Once you have learned
them, you can use a wide variety of systems based on this
standard.

There are four unique languages; two that are textual two that
are graphical:
• Textual
• Instruction List, IL
• Structured Text, ST
• Graphical
• Ladder Diagram, LD
• Function Block Diagram, FBD

Instruction List (IL)

Function Block Diagram (FBD)

LD A

ANDN B

ST C

C= A and NOT B

 A B C

-| |--|/|----------------()

AND

A C

B

Structured Text (ST)

Ladder Diagram (LD)

In the above figure, all four languages describe the same
simple program part.

The choice of programming language is dependent on:
• The programmers’ background
• The problem at hand
• How thoroughly the problem is specified
• The structure of the control system
• The interface to other people / departments

All four languages are interlinked: they provide a common
suite, with a link to existing experience. In this way they also
provide a communication tool, combining people of different
backgrounds.

Ladder Diagram has its roots in the USA. It is based on the
graphical presentation of Relay Ladder Logic.

Instruction List is its European counterpart. As a textual
language, it resembles assembler.

Function Block Diagram is very common to the process
industry. It expresses the behavior of functions, function
blocks and programs as a set of interconnected graphical
blocks, like in electronic circuit diagrams. It looks at a system
in terms of the flow of signals between processing elements.
Structured Text is a very powerful language with its roots in
Ada, Pascal and “C”. It is well suited for, and can be used to
define the nature of complex Function Blocks, which can then
be used within any of the other languages.

6 OV E RV I E W O F TH E I EC 611 3 1 S TA N DA R D X SER I E S PR O D U C TS | DS/2 101 1 2 7- EN

—
Programming languages continued

Top-down vs. Bottom-up
Also, the standard allows two ways of developing your
program: top down and bottom up. Either you specify your
whole application and divide it into sub parts, declare your
variables, and so on or you start programming your
application at the bottom, for instance via derived functions
and function blocks.

Often complex projects are implemented using a combination
of both approaches. Whatever you choose, the development
environment will help you through the whole process.

Common
elements

Programming
languages

Top
down

Bottom
up

Sales Service Software

http://new.abb.com/products/measurement-products/upstream-oil-and-gas/products/flow-computers-remote-controllers/flow-computers
http://new.abb.com/products/measurement-products/service
http://new.abb.com/products/measurement-products/upstream-oil-and-gas/products/host-software
http://new.abb.com/products/measurement-products/upstream-oil-and-gas/products/flow-computers-remote-controllers/flow-computers
http://new.abb.com/products/measurement-products/service
http://new.abb.com/products/measurement-products/upstream-oil-and-gas/products/host-software

7OV E RV I E W O F TH E I EC 611 3 1 S TA N DA R D X SER I E S PR O D U C TS | DS/2 101 1 2 7- EN

—
Conclusion

The technical implications of the IEC 61131-3 standard are
high, leaving enough room for growth and differentiation.
This makes this standard suitable to evolve well into the next
century.

IEC 61131-3 will have a great impact on the whole control
industry. It certainly will not restrict itself to the conventional
PLC market.

Nowadays, one sees it adopted in the motion control market,
distributed systems and Softlogic / PC based control
systems, including SCADA packages. And the areas are still
growing.

Having a standard over such a broad application area brings
numerous benefits for users and programmers:
• Reduced waste of human resources, in training, debugging,

maintenance and consultancy.
• Creating a focus to problem solving via a high level of

software re-usability.
• Reduced misunderstanding and errors.
• Programming techniques usable in a broad environment:

general industrial control.
• Combining different components form different programs,

projects, locations, companies and/or countries.

—
Application to XSeries technology

As recognized above, IEC 61131-3 need not be restricted to
conventional PLC markets. At ABB Totalflow, we believe the
integration of IEC 61131-3 into technology such as ours
represents a significant step forward.

With IEC 61131-3, our customers (whether end-users or
integrators or OEM companies) are provided a globally
recognized software environment that is well suited to many
measurement and control applications.

Along with Totalflow’s pre-built, industry focused
applications, integration of the IEC 61131-3 into our
Renaissance Software Architecture provides a powerful suite
of tools, the combination of which is definitely greater the
mere sum of the parts.

—
We reserve the right to make technical changes or modify the contents of this document
without prior notice. With regard to purchase orders, the agreed particulars shall prevail.
ABB does not accept any responsibility whatsoever for potential errors or possible lack
of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained
therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole
or in parts – is forbidden without prior written consent of ABB.

© Copyright 2019 ABB.
All rights reserved. D

S
/2

10
11

27
-E

N

R
ev

. A
E

0

3.
20

19

—
ABB Inc.
Measurement & Analytics
Quotes: totalflow.inquiry@us.abb.com
Orders: totalflow.order@us.abb.com
Training: totalflow.training@us.abb.com
Support: totalflowsupport@us.abb.com
 +1 800 442 3097 (opt. 2)

Main Office
7051 Industrial Boulevard
Bartlesville, OK 74006
Ph: +1 918 338 4888

www.abb.com/upstream

California Office
4300 Stine Road
Suite 405-407
Bakersfield, CA 93313
Ph: +1 661 833 2030

Kansas Office
2705 Centennial Boulevard
Liberal, KS 67901
Ph: +1 620 626 4350

Texas Office – Odessa
8007 East Business 20
Odessa, TX 79765
Ph: +1 432 272 1173

Texas Office – Houston
3700 West Sam Houston
Parkway South, Suite 600
Houston, TX 77042
Ph: +1 713 587 8000

Texas Office – Pleasanton
150 Eagle Ford Road
Pleasanton, TX 78064
Ph: +1 830 569 8062

