

ABB MEASUREMENT & ANALYTICS | COMMUNICATIONS SUPPLEMENT

AWT210 HART 2-wire transmitter

Measurement made easy

AWT210 2-Wire transmitter

Introduction

This Communication Supplement provides procedures specifically related to the AWT210 HART® 2-wire transmitter. Refer to the AWT210 Operating Instruction (OI/AWT210-EN) for general information on installation, operation and maintenance.

For more information

Further publications for the AWT210 transmitter are available for free download from: <u>www.abb.com/measurement</u>

or by scanning this code:

	Search for or click on:
AWT210 transmitter – Data Sheet	DS/AWT210-EN
AWT210 transmitter – Commissioning Instruction	<u>CI/AWT210-EN</u>
AWT210 transmitter – Operating Instruction	OI/AWT210-EN
AWT210 transmitter – HART FDS Communications Supplement	<u>COM/AWT210/</u> t <u>HART/FDS-EN</u>

Contents

1	Health & Safety
	Document symbols3
	Safety precautions3
	Potential safety hazards3
	AWT210 transmitter – electrical
	Safety standards3
	Waste Electrical and Electronic Equipment (WEEE) 4
	Product recycling and disposal (Europe only) 4
	Information on ROHS Directive 2011/65/EU
	(RoHS II)
	Product symbols 4
2	Overview
	Abbreviations and Definitions5
	Reference documents5
	HART Manufacturing ID and Device Type5
	Engineering units and dynamic variables5
	Dynamic variables5
	pH units5
	Conductivity units5
3	Transmitter functionality and operator
	interface controls
	Process interface
	Sensor Input Channels
	Host interface
	Analog output
	Local interfaces, jumpers and switches
	Local controls and displays
	Internal jumpers and switches
4	Installation6
	Analog mode signal and power wiring7
	Multi-drop mode (digital) signal and power wiring 8
	Sensor wiring and grounding 8

5	Appendix9
	Introduction
	Supported HART commands
	Universal HART commands9
	Common practice HART commands9
	Device-specific HART commands: general9
	Devicespecific HART commands:
	Two Electrode conductivity (TE)
	Device-specific HART commands:
	Toroidal Conductivity (TC)
	Device-specific HART commands:
	Four Electrode Conductivity (EC)
	Device-specific HART commands: pH 11

Sales

Service

Software

1 Health & Safety

Document symbols

Symbols that appear in this document are explained below:

DANGER – SERIOUS DAMAGE TO HEALTH

This symbol in conjunction with the signal word 'DANGER' indicates an imminent electrical hazard. Failure to observe this safety information will result in death or severe injury.

WARNING - BODILY INJURY

This symbol in conjunction with the signal word 'WARNING' indicates a potential electrical hazard. Failure to observe this safety information will result in death or severe injury.

1

CAUTION – MINOR INJURIES

This symbol in conjunction with the signal word 'CAUTION' indicates a potentially dangerous situation. Failure to observe this safety information may result in minor or moderate injury. The symbol may also be used for property damage warnings.

IMPORTANT (NOTE)

This symbol indicates operator tips, particularly useful information or important information about the product or its further uses. The signal word 'IMPORTANT (NOTE)' does not indicate a dangerous or harmful situation.

Safety precautions

Be sure to read, understand and follow the instructions contained within this manual before and during use of the equipment. Failure to do so could result in bodily harm or damage to the equipment.

WARNING - BODILY INJURY

Installation, operation, maintenance and servicing must be performed:

- by suitably trained personnel only
- in accordance with the information provided in this manual
- in accordance with relevant national and local regulations

Potential safety hazards

AWT210 transmitter - electrical

WARNING – BODILY INJURY

To ensure safe use when operating this equipment, the following points must be observed:

- Up to 240 V AC may be present. Be sure to isolate the supply before removing the terminal cover.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.

Safety advice concerning the use of the equipment described in this manual or any relevant Material Safety Data Sheets (where applicable) can be obtained from the Company, together with servicing and spares information.

Safety standards

This product has been designed to satisfy the requirements of IEC61010-1:2010 3rd edition 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use' and complies with US NEC 500, NIST and OSHA.

This equipment complies with the requirements of CEI/IEC 61010-1:2010 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use' and complies with US NEC 500 and Occupational Safety & Health Administration. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

...1 Health & Safety

Waste Electrical and Electronic Equipment (WEEE)

WEEE EU Directive 2012/19/EU covers disposal and recycling of electronic equipment at the end of life for reasons of environmental protection.

For industrial installations, portable equipment is included. This means that when the AquaMaster4 transmitter is used with a portable AquaProbe sensor, it is included in directive's scope and has the WEEE symbol (left) on its data label. Therefore, at the end of life, contact the supplier for specialist waste recycling. It must not be disposed of as municipal waste.

Permanent Industrial installations are not designated within this directive for recycling. At the point of supply the intended use is not always known, so the WEEE symbol is included on all remote forms of the AquaMaster4 transmitter.

Product recycling and disposal (Europe only)

El no sy

Electrical equipment marked with this symbol may not be disposed of in European public disposal systems after 12 August 2005. To conform to European local and national regulations (EU Directive 2012/19/EU), European electrical equipment users can now return old or end-of-life equipment to the manufacturer for disposal at no charge to the user. ABB is committed to ensuring that the risk of any environmental damage or pollution caused by any of its products is minimized as far as possible.

IMPORTANT (NOTE)

For return for recycling, please contact the equipment manufacturer or supplier for instructions on how to return end-of-life equipment for proper disposal.

Information on ROHS Directive 2011/65/EU (RoHS II)

ABB, Industrial Automation, Measurement & Analytics, UK, fully supports the objectives of the ROHS II directive. All in-scope products placed on the market by IAMA UK on and following the 22nd of July 2017 and without any specific exemption, will be compliant to the ROHS II directive, 2011/65/EU.

Product symbols

Symbols that may appear on this product are shown below:

Risk of electric shock.

This symbol, when noted on a product, indicates a potential hazard which could cause serious personal injury and/or death. The user should reference this instruction manual for operation and/or safety information.

Protective earth (ground) terminal.

Functional earth (ground) terminal.

= = = Direct current supply only.

This symbol, when noted on a product enclosure or barrier, indicates that a risk of electrical shock and/or electrocution exists and indicates that only individuals qualified to work with hazardous voltages should open the enclosure or remove the barrier.

Recycle separately from general waste under the WEEE directive.

2 Overview

The AWT210 HART® transmitter provides either a 4 to 20mA analog signal (conventional analog), a 4 to 20mA analog signal with superimposed digital signal (HART point to point analog), or a polled digital signal (HART multi-drop). Using HART communications, many functions normally requiring the use of the local user-interface can be accessed remotely using HART communication devices.

Four variants of AWT210 are available for use with pH, ORP, plon, and conductivity sensors.

The device has four dynamic variables. The device does not have any device variables.

The analogue output of this device corresponds to the primary variable (pH, ORP, plon, lon concentration, conductivity, or concentration), outputting 4 mA at the lower range value and 20 mA at the upper range value.

Supported Sensors:

- pH
- · 2-electrode conductivity
- 4-electrode conductivity
- toroidal conductivity

The ABB AWT210 analyzer complies with HART Protocol Revision 7.0.

Abbreviations and Definitions

Module	Description
TE Module	2-electrode conductivity module
EC Module	4-electrode conductivity module
TC Module	Toroidal conductivity module
Pt100	100 Ω Platinum temperature sensor
Pt1000	1000 Ω Platinum temperature sensor
3k Balco	3000 Ω Balco alloy temperature sensor
ORP	Oxidation-reduction potential
DDL	Device description language
HART	Highway addressable remote transducer
ннт	Hand held terminal

Reference documents

Document ID	Title
DS/AWT210-EN	AWT210 transmitter Data Sheet
OI/AWT210-EN	AWT210 transmitter Operating Instruction
CI/AWT210-EN	AWT210 transmitter Commissioning Instruction
COM/AWT210/ HART-FDS-EN	AWT210 transmitter HART Field Device Specification

HART manufacturing ID and device type

All HART products contain unique identifiers that specify the product manufacturer and device type. In accordance with this requirement, the ABB Manufacture ID is 26 (1A hexadecimal) and the device type code for AWT210 is 34 (22 hexadecimal).

Engineering units and dynamic variables

Dynamic variables

	рН (рН)		Conductivity (TE, EC, TC)	
	Measurement	Units	Measurement	Units
PV	pH ORP pION Ion Conc.	pH mV %, ppb, ppm, μg/l mg/l	Conductivity concentration	μS/cm, mS/cm % ppb ppm μg/l mg/l
sv	Temperature	°C, °F	Temperature	°C °F
тν	Reference impedance	kΩ	Compensated conductivity	μS/cm
QV	Input voltage	mV	Uncompensated conductivity	μS/cm

Unit codes

Unit	Unit code	Unit type/dynamic variable classification	Unit type code
Deg C	32	Temperature	64
Deg F	33	Temperature	64
uS/Cm	67	Conductivity/Volumetric conductance	87
mS/Cm	66	Conductivity/Volumetric conductance	87
mV	36	EMF	83
рН	59	Analytical	81
Kilo Ohm	163	Electric resistance	85
%	57	Concentration	90
ppm	139	Concentration	90
ppb	169	Concentration	90
ug/l	146	Concentration	90
mg/l	240	Concentration	90

3 Transmitter functionality and operator interface controls

Process interface

Sensor Input Channels

The sensor module provides 8 terminals marked 1 to 8, 1 to 4 for Process Variable (detailed in commissioning instructions) and 5 to 8 for temperature sensor (up to 3 wire RTD + shield). Operating ranges correspond to the capabilities of each sensor type.

Host interface

The 2-wire 4 to 20 mA current loop is connected via terminals 1 and 2 on the HART communications module and can be tested via terminals 4 and 5.

Output from the transmitter representing the PV measurement linearized and scaled according to the engineering range set on the instrument. PV% is displayed on the **Signals View** page.

Analog output

	Value
Below Lower Range	3.8 mA
Above Upper Range	20.5 mA
Device malfunction indication	
Maximum current	22.0 mA
Multi-drop current draw	3.6 mA
Lift-off voltage	12V

Local interfaces, jumpers and switches

Local controls and displays

• The Device has a 75 x 65 mm (3.00 x 2.55 in.) monochromatic dot matrix LCD display and 4 push buttons

Internal jumpers and switches

- The device has 2 internal switches, situated on the top righthand side of the HART Communication Module see Figure 1.
- SW1: Reset to Defaults
- If the device is powered up with SW1 in the ON position it returns device setup to default factory settings. If powered up with SW1 in the OFF position the device retains previously saved user settings*.
- SW2: Write Protection
- If SW2 is in the ON position HW write protect shows as enabled and the user is unable to make changes to setup or send Write commands via HART. With SW2 in OFF position the user is able to make changes/send commands providing they are in a sufficient access level and Software Write Protect has not been enabled.

4 Installation

This section provides installation instructions specific to the AWT210 HART functionality.

WARNING – BODILY INJURY

- For general mechanical, electrical and hazardous location installation requirements refer to the AWT210 Operating Instructions (OI/AWT210-EN).
- The signal/power terminals accept wire sizes 0.14 mm² (26 AWG) to 1.5 mm²(14 AWG).
- Wiring should not be run in conduit or open trays where power or heavy electrical equipment could physically or electrically interfere with the signal wiring. Twisted, shielded pairs should be used for cabling to ensure best performance. Reverse polarity protection, built into the transmitter, protects it against accidental reversal of the field wiring connections.

Figure 1 HART communication module connection overview

*Reset to defaults is not performed if SW2 Write Protection is ON.

HART point-to-point analog signal and power wiring (loop current mode enabled)

Make connections to the HART communication module as shown in Figure 2.

Do not connect secondary communication device directly across the power supply.

Figure 2 Analog mode wiring diagram

The signal wiring supplies all power to the transmitter.

The power supply limits are 14.0 to 42.0 V DC (14 to 30 V DC for agency certified installation).

The minimum supply voltage is determined by the loop resistance (R) as follows:

minimum supply = 14.0 (volt) + 0.022 (amps) x R (ohms)

Load resistance must include any meters external to the AWT210 transmitter, the wiring and the system input.

IMPORTANT (NOTE)

The equation for minimum supply voltage is based on a maximum output current of 20 mA. In some cases such as fail high or process variable over range condition, the output current limits to 21.5 mA. To support these cases, use 0.0215 instead of 0.020.

A secondary communication device can be connected anywhere there is access to the signal wires as long as it is not connected directly across the power supply.

IMPORTANT (NOTE)

Only one secondary device can communicate on the loop at any given time.

... 4 Installation

Multi-drop mode (digital) signal and power wiring (loop current mode enabled)

Refer to Figure 3 for a typical wiring configuration for multidrop installations. In the multi-drop mode of operation, the analog 4 to 20 mA is not used. Instead the transmitter draws a constant 3.6 mA of current to maintain operation.

- Do not connect secondary communication device directly across the power supply.
- Add 1 V DC to all minimum supply voltage values if using the TEST connections.
- The maximum number of transmitters is 63.

IMPORTANT (NOTE)

The equation for minimum supply voltage is based on a maximum output current of 4 mA. In some cases other transmitters may use a multi-drop minimum current of greater than 4 mA. Consult the vendor product instruction for multi-drop current values for other equipment on the bus..

Figure 3 Digital mode wiring diagram

In the multi-drop mode, the process variable signal of each transmitter on the signal bus is digitally polled. The primary communication device sequentially polls each transmitter output on the bus. Each transmitter has its own unique address that is assigned during configuration. The address (1..15) allows the primary communication device to distinguish between transmitters on the bus.

Each transmitter on the bus is wired from the primary communication device to the positive (+) and negative (-) POWER (SIGNAL) terminals of the AWT210. Connect all transmitters on the bus in parallel.

The minimum power supply voltage required for the loop is typically determined by:

- minimum voltage supply = 14 V + (0.004 A x R)
- minimum current supply = 0.004 A x T

Where:

- R is the Load Resistance in ohms, and
- T is the number of transmitters on the bus

The load resistance must include the system input resistance and the resistance of the wire. Analog meters or measurement devices should not be connected to the bus since the transmitters on the bus are not delivering an analog process variable.

A secondary communication device can be connected anywhere there is access to the signal wires, as long as it is not connected directly across the power supply.

IMPORTANT (NOTE)

Only one secondary device can communicate on the loop at any given time.

Sensor wiring and grounding

Refer to the AWT210 Operating Instructions (OI/AWT210-EN) for sensor wiring and grounding instructions.

5 Appendix

Introduction

This appendix contains descriptions of the HART commands available through the HART universal, common practice and device specific command sets.

Device-specific command details such as data bytes and response codes are described in the AWT210 HART field device specification (COM/AWT210/HART-FDS-EN)

Supported HART commands

The following HART Commands are supported on the AWT210.

Universal HART commands

Command	Description	
3	Read Dynamic Variables And Loop Current	PV,SV,TV and QV14 ¹
14	Read Primary Variable Transducer Information	

Table 1 Universal HART commands

Common practice HART commands

Command	Description	
34	Write PV Damping Value	*
35	Write PV Range Values	*
36	Set PV Upper Range Value	*
37	Set PV Lower Range Value	*
40	Enter/Exit Fixed Current Mode	*
41	Perform Self-Test	*
42	Perform Device Reset	*
44	Write PV Units	*
45	Trim Loop Current Zero	*
46	Trim Loop Current Gain	*
48	Read Additional Device Status	
59	Write Number of Response Preambles	*
71	Lock Device	*
76	Read Lock Device State	

*Requires HART login (Command 168) to Advanced level or higher if HART login is enabled via Configuration -> Advanced-> Device Setup -> Security -> HART Login -> Enabled

Table 2 Common practice HART commands

¹ AWT does not support device variables, only dynamic variables. Hence, Command 9 returns a response code of 14 (Dynamic Variables returned for Device Variables) as required by the HART specification. However, this return value is seen as an error by Simatic PDC software. This response code may be turned off in the device by enabling PDM compatibility at the following menu: Device Setup > PDM Compatibility > Enable.

Device-specific HART commands: general

Command	Description	
122	Login to Service Level	
123	Read Board Object	1
124	Write Object	1
125	Read Memory	,
126	Write Memory	3
128	Reset Software Write Protection	
129	Read Revision	
130	Write Current Alarm Selection	
131	Read Write Protection	
132	Write Software Write Protection	
134	Recognize Temperature Compensation Type	
135	Reset to Factory Default	
136	Write Temperature Compensation Type	
137	Read Front End Board Data	
138	Write Manual Temperature Setpoint	
139	Write Reference Temperature	
140	Read PV and Temperature Calibration Slope and Offset	
141	Write PV Calibration Slope and Offset	
142	Write Temperature Calibration Slope and Offset	
143	Log Out HART Service Code	
168	HART Login with Password ²	
200	Read Diagnosis Masking	
201	Write Diagnosis Masking	
202	Read Diagnosis Simulation	
203	Write Diagnosis Simulation	
210	Write HART Version	
243	Write Sensor Diagnostic Option	
249	Write Temperature Unit	
250	Read Conductivity Units Mode	
251	Write Conductivity Units Mode	
253	Read Condensed Status Mapping Array	

*Requires HART Login to Service Level (Command 122)

Table 3 Device-specific HART commands: general

² HART commands that write to the device can be protected with access control. This is similar to the access control within the device that has **Read Only, Calibrate, Advanced** and **Service** levels.

Access control for HART can be enabled at the following menu: Device Setup > Security Setup > HART Logging > Password Protected. If this option is enabled, the user will have to log in with the appropriate access level password before sending write commands to the device. Please see details of command 168 in the HART Field Device Specification document for AWT210.

... 5 Appendix

....Supported HART commands

Device--specific HART commands: Two Electrode conductivity (TE)

Command	Description
144	Write Measurement Type
145	Write Cell Constant
146	Read Concentration Configuration
147	Write Concentration Display Text
148	Read Temperature Sensor and Compensation Configuration
149	Write Automatic Temperature Compensation Option
150	Write Temperature Compensation Coefficient
151	Write Temperature Compensation Pure H2O Option
152	Read Temperature Compensation Curve
153	Write Temperature Compensation Curve
154	Read Concentration Curve
155	Write Concentration Curve
156	Reset PV and Temperature Calibration
157	Read Stable Value for edit during 1 point PV Calibration
158	Read Calibration Mode and Status
159	Write Calibration Mode and Status
160	Write Calibration Value
161	Read Calibration Progress and Error Status
162	Read Factory Calibration Parameters
163	Write Factory Calibration Parameters
164	Read Factory Calibration Slope and Offset
252	Read PV Sensor Config

Device-specific HART commands: Toroidal Conductivity (TC)

Command	Description
165	Read PV Sensor Configuration
166	Write Measurement Type
167	Read Concentration Configuration
169	Write Concentration Display Text
170	Read Temperature Sensor and Compensation Configuration
171	Write Automatic Temperature Compensation Option
172	Write Temperature Compensation Coefficient
173	Read Temperature Compensation Curve Part1
174	Read Temperature Compensation Curve Part 2
175	Read Temperature Compensation Curve Part 3
176	Read Temperature Compensation Curve Part 4
177	Reset PV and Temperature Calibration
178	Read Stable PV for edit during 1 point PV Calibration
179	Read Calibration Mode and Status
180	Write Calibration Mode and Status
181	Write Calibration Value
182	Read Calibration Progress and Error
183	Read Factory Calibration Parameters
184	Write Factory Calibration Parameters
185	Read Factory Calibration Slope and Offset
253	Write Concentration Solution

Table 5Device-specific HART commands:Toroidal Conductivity (TC)

Table 4Device--specific HART commands:Two Electrode conductivity (TE)

Device-specific HART commands: Four Electrode Conductivity (EC)

Command	Description
186	Read PV Sensor Configuration
187	Write Measurement Type
188	Write Sensor Group
189	Read Concentration Configuration
190	Write Concentration Solution
191	Write Concentration Text Display
192	Read Temperature Sensor and Compensation Configuration
193	Write Automatic Temperature Compensation Option
194	Write Temperature Compensation Coefficient
195	Read Temperature Compensation Curve Part1
196	Read Temperature Compensation Curve Part 2
197	Read Temperature Compensation Curve Part 3
198	Read Temperature Compensation Curve Part 4
199	Reset PV and Temperature Calibration
204	Read Stable PV for edit during 1 point PV Calibration
205	Read Calibration Mode and Status
206	Write Calibration Mode and Status
207	Write Calibration Value
208	Read Calibration Progress and Error
209	Read Factory Calibration Parameters
211	Write Factory Calibration Parameters
212	Read Factory Calibration Slope and Offset

Table 6 Device-specific HART commands:

Four Electrode Conductivity (EC)

Device-specific HART commands: pH

Command	Description
213	Read PV Sensor Configuration
214	Write Measurement Type
215	Write pH Sensor Type
216	Write Reference Impedance Limit
217	Write Isopotential pH and Asymmetric Potential
218	Read ION Concentration Configuration
219	Write ION Concentration Configuration
220	Read Temperature Sensor and Compensation Configuration
221	Write pH Solution Coefficient Value
222	Write millivolt Solution Coefficient Value
223	Read Primary Variable Transfer Function Curve Part 1
224	Write Primary Variable Transfer Function Curve Part 1
225	Read Two Point Manual Calibration Parameters
226	Write Two Point Manual Calibration Parameters
227	Reset PV and Temperature Calibration
228	Read the Stable PV for edit during 1 point PV Calibration
229	Read PV Calibration Slope and Offset Alarm Limits
230	Write PV Calibration Slope and Offset Alarm Limits
231	Read Auto-Buffer Calibration Parameters
232	Write Standard Buffer Type
233	Write Buffer 1 and Buffer 2 Values
234	Read Calibration Mode and Status
235	Write Calibration Mode and Status
236	Read Temperature Compensated Buffer Value
237	Write Calibration Value
238	Read Calibration Progress and Error
239	Read User Defined Buffer Table 1 Temperature and pH
240	Write User Defined Buffer Table 1 Temperature and pH
241	Read User Defined Buffer Table 2 Temperature and pH
242	Write User Defined Buffer Table 2 Temperature and pH
244	Read Factory Calibration Parameters
245	Write Factory Calibration Parameters
246	Read Factory Calibration Slope and Offset
247	Write Linearity/Function Generator
248	Read Linearity/Function Generator

Table 7 Device-specific HART commands: pH

Acknowledgements

- Fieldbus is a registered trademark of the Fieldbus Foundation
- HART is a registered trademark of the FieldComm Group
- Modbus is a registered trademark of Schneider Electric USA Inc.
- PROFIBUS is a registered trademark of PROFIBUS organization.

ABB Limited

Measurement & Analytics

Oldends Lane, Stonehouse Gloucestershire, GL10 3TA UK Tel: +44 (0)1453 826 661 Fax: +44 (0)1453 829 671 Email: instrumentation@gb.abb.com

ABB Inc.

Measurement & Analytics

125 E. County Line Road Warminster, PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

abb.com/measurement

3KXA877202R4001

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts - is forbidden without prior written consent of ABB. © ABB 2019