

Data sheet

Differential pressure controller with flow limitation (PN 16, 25, 40)

AFPB / VFQ 2(1) – return mounting, adjustable setting

AFPB-F / VFQ 2(1) – return mounting, fixed setting

Description

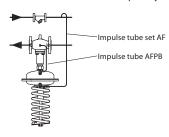
The controller is a self-acting differential pressure controller with flow limitation primarily for use in district heating systems. The controller closes on rising differential pressure or when set max. flow is exceeded.

The controller has a control valve with adjustable flow restrictor, an actuator with one control diaphragm and spring for differential pressure setting.

Further on two valve versions are available:

- VFQ 2 with metallic sealing cone
- VFQ 21 with soft sealing cone (on special request)

Main data:


- · DN 15-125
- k_{vs} 4,0-160 m³/h
- Flow range: 0,05-120 m³/h
- PN 16, 25, 40
- · Setting range: 0,1-07 bar/0,15-1,5 bar
- Temperature:
 - Circulation water/glycolic water up to 30 %:
 - 2 ... 150/200 °C
- Connections:
- Flange

Ordering

Example 1: Differential pressure controller with flow limitation; return mounting; DN 15; k_{vs} 4,0; PN 16; metallic sealing; setting range 0,1-0,7 bar; t_{max} 150 °C; flange;

- 1× VFQ 2 DN 15 valve
 Code no: 065B2654
- 1× AFPB actuator Code no: **003G1017**
- 1× AFPB DN 15 impulse tube
 Code no: 003G1355
- 1× Impulse tube set AF Code no: 003G1391

Products will be delivered separatly.

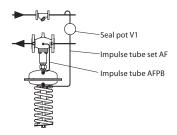
VFQ 2 Valves (metallic sealing cone)

Picture	DN	k _{vs}	Connections	T _{max} .	Code No.	T _{max} .	Code No.		
Picture	(mm)	(m³/h)	Connections	(°C)	PN 16	(°C)	Code PN 25 065B2667 065B2668 065B2669 065B2670 065B2671 065B2672 065B2673 065B2674 065B2675 065B2676	PN 40	
	15	4,0			065B2654		065B2667	065B2677	
	20	6,3			065B2655		065B2668	065B2678	
	25	8,0			065B2656		065B2669	065B2679	
, 💂 ,	32	16			065B2657		065B2670	065B2680	
	40	20	Flanges acc. to	150	065B2658 065B2659	2001)	065B2671	065B2681	
	50	32	EN 1092-1	150		200"	065B2672	065B2682	
¥	65	50			065B2660]	065B2673	065B2683	
	80	80			065B2661		065B2674	065B2684	
	100	125			065B2662		065B2675	065B2685	
	125	160			065B2663		065B2676	065B2686	

Note: other valves available on special request.

¹⁾ at temperatures above 150 °C only with seal pots (see Accessories)

© Danfoss | 2016.04 VD.CA.B4.02 | 1



Ordering (continuous)

Example 2: Differential pressure controller with flow limitation; return mounting; DN 15; k_{vs} 4,0; PN 25; metallic sealing; setting range 0,1-0,7 bar; t_{max} 200 °C; flange;

- 1× VFQ 2 DN 15 valve Code no: 065B2667
- 1× AFPB actuator Code no: **003G1017**
- 1× AFPB DN 15 impulse tube Code no: **003G1355**
- 1× Impulse tube set AF . Code no: **003G1391**
- 1× Seal pot V1 Code no: **003G1392**

Products will be delivered separatly.

AFPB(-F) Actuators

Picture	Δp setting range (bar)	Max. operat. pressure	Code No.
	0,1 - 0,7	25	003G1017
	0,15 – 1,5	25	003G1016
ADARARA			
	0,2	25	003G1026
	0,5	25	003G1027

Accessories

Accessories	T	F	D	N	PN	C. I. N.
Picture	Type designation	For controller	(m	m)	PN	Code No.
			1	5		003G1355
			20 25 32			
						003G1357
)						
	Impulse tubes (Stainless steel)	AFPB		0	16, 25, 40	003G1359
	(Stairness steel)		_	0		003G1360
			_	.0		003G1361
						003G1363
			100			003G1363
Picture	Type designation	Description		Ordering number		Code No.
000	Impulse tube set AF	- 1× Copper tube Ø10 × 1 × 1500 mm - 1 × compression fittin tube connection to pip - 2 × socket		-		003G1391
	Seal pot V11)	Capacity 1 liter; with co fittings for imp. tube Ø1		003G1392		
	Compression fitting ²⁾	For impulse tube Ø10 co to controller	onnections	G 1/4		003G1468
	Combination piece KF3	For combination with p electrical actuators	ressure and	G 11/4/2× G 11/4		003G1397
80	Combination piece KF2	For combination with the	nermostat			003G1398
	Shut off valve	For impulse tube Ø10		_		003G1401
	Throttle valve					065B2909

 $^{^{1)}}$ Seal pot has to be used on impulse tubes always when Tmax \geq 150 °C $^{2)}$ Consist of a nipple, compression ring and nut

Service kits

Picture	Type designation	For valve	DN (mm)	k _{vs} (m³/h)	Code No.	
			15	4.0	065B2796	
			20	6.3	065B2797	
		25		8	0.5500700	
			32	16	065B2798	
	Value in sent	VFQ 2	40	20		
	Valve insert		50	32	065B2799	
~			65	50	06502000	
			80	80	065B2800	
			100	125	0450004	
			125	160	065B2801	
O	Stuffing cone (with EPD	M O-rings)			003G1464	

2 | © Danfoss | 2016.04 VD.CA.B4.02

Technical data

Valve

Nominal diameter					DN	15	20	25	32	40	50	65	80	100	125
k _{vs} value				m³/h	4,0	6,3	8,0	16	20	32	50	80	125	160	
	Δp _{sp}	Δp _{SISTEM}	Δрь												
Range			0,1/0,2/0,	5 from		0,05	0,15	0,25	0,4	0,6	0,9	2	3,5	6,5	11
of max. flow	0,2	Magree Magree	40	50											
setting 1)	0,5	0,3	0,2	to	m-/n	2	3	4	7	11	16	28	40	63	80
	1,0	0,5	0,5	to		3	4.5	6	10	16	24	40	58	90	120
Cavitatio	n facto	٢Z				0,6	0,6	0,6	0,55	0,55	0,5	0,5	0,45	0,4	0,35
Leakage a			<u></u>	VFQ 2						≤	0,03				
standard	IEC 534	! (% of k _v	s)	VFQ 21						≤	0,01				
Nominal	pressur	e			PN					16,	25, 40				
Min. diffe	rential	pressure	!							see r	emark ²⁾				
Max diffe	erential	nressure	_	PN 16	bar	16							15		
Max. all ic	rential	pressure		PN 25, 40						20				15	
Media						Circulation water/glycolic water up to 30 %									
Media pH	l									Min. 7	max. 10)			
Media ter	nnerat	ure		VFQ 2	۰٫	2 150/2 200 ³⁾									
Media tei	прегис			VFQ 21		2 150/2 200 ³⁾ 2 150									
Connecti	ons					Flange									
Material	s														
				PN 16		Grey cast iron EN-GJL-250 (GG-25)									
Valve boo	dy			PN 25		Ductile iron EN-GJS-400(GGG-40.3)									
				PN 40					Cast s	teel GP2	240GH (GS-C 25)		
Valve sea	t					Stainless steel, mat. No. 1.4021									
Valve con	e					Stainless steel, mat. No. 1.4404									
Sealing				VFQ 2		Metal									
Jeaning				VFQ 21						EF	PDM				
Pressure i	relieve	system						Bell	lows (St	ainless s	teel, ma	at. No. 1	.4571)		

Max. flow rate depends on the differential pressure over the system (dp System). System is part of the application where differential pressure is controlled by AFPB(-F) and for this part the resistance is well known/defined. Flow rates in table are sprecified for 3 different situations.

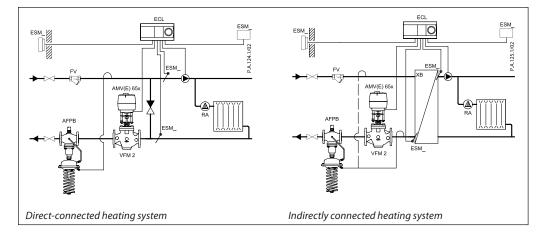
 $\Delta p_{SP} = \Delta p_{System} + \Delta p_b$ Δp_{SP} -differential pressure set point

 Δp_{system} -system differential pressure Δp_b -differential pressure over flow restrictor

$$\Delta p_{b}$$
-differential pressure over flow restrictor

2) Depends on the flow rate and valve k_{VS} ; For $Q_{set} = Q_{max} \rightarrow \Delta p_{min} \ge 0.5$ bar; For $Q_{set} < Q_{max} \rightarrow \Delta p_{min} = \left(\frac{Q}{k_{VS}}\right)^{2} + \Delta p_{b}$

Actuator


Туре		AF	РВ	AFPB-F			
Actuator size	cm ²	250					
Max. operational pressure	PN	25					
2:11	bar	0,1-0,7	0,15-1,5	0,2	0,5		
Diff. pressure setting ranges and spring colours		yellow	red	fixed setting			
Materials							
Actuator housing	Stainless steel, mat. No.1.0338, zinc plated and yellow chromate						
Control diaphragm	EPDM (Rolling; fibre enforced)						

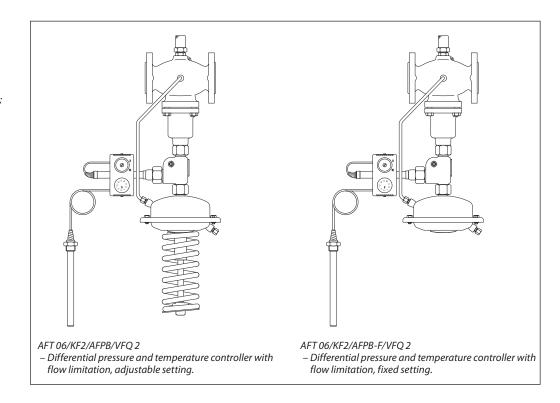
³⁾ at temperatures above 150 °C only with seal pots (see Accessories)

Application principles

AFPB controller must be installed in the return pipe only.

Combinations

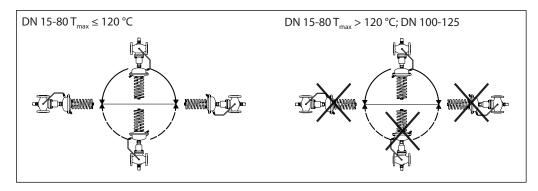
Example:


Differential pressure and temperature controller with flow limitation; return mounting; DN 15; k_{vs} 4,0; PN 16; metallic sealing; setting range 0,1-0,7 bar; t_{max} 150 °C; flange;

- 1× VFQ 2 DN 15 valve Code no: 065B2654
- 1× AFPB actuator Code no: **003G1017**
- 2× Impulse tube set AF Code no: **003G1391**
- 1× AFT06 thermostat Code no: **065-4390**
- $1 \times$ Combination piece KF2 Code no: **003G1398**

Products will be delievered separatelly.

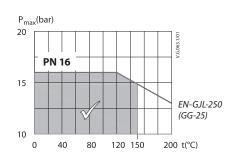
Note:


For AFT 06 thermostat data see relevant data sheet

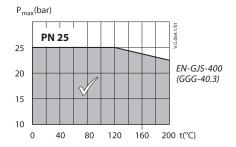
Installation positions

DN 15-80 $T_{max} \le 120 \, ^{\circ}\text{C}$ The controllers can be installed in any position.

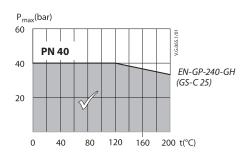
DN 15-80 T_{max} > 120 °C; DN 100-125 The controllers can be installed in horizontal pipes only, with a pressure actuator oriented downwards.



4 | © Danfoss | 2016.04 VD.CA.B4.02



Pressure temperature diagram


Working area is below P-T line and it ends at Tmax for each valve

Maximum allowed operating pressure as a function of media temperature (according to EN 1092-2)

Maximum allowed operating pressure as a function of media temperature (according to EN 1092-2)

Maximum allowed operating pressure as a function of media temperature (according to EN 1092-1)

Sizing

 Directly connected heating system

Example 1

Motorised control valve (MCV) for mixing circuit in direct-connected heating system requires differential pressure of 0,3 bar (30 kPa) and flow less than 1800 l/h.

Given data:

 $\begin{array}{ll} Q_{max} & = 1.8 \; m^3/h \; (1800 \; l/h) \\ \Delta p_{min} & = 0.7 \; bar \; (70 \; kPa) \\ \Delta p_{circuit}^{10} & = 0.1 \; bar \; (10 \; kPa) \\ \Delta p_{MCV} & = 0.3 \; bar \; (30 \; kPa) \; selected \\ \Delta p_b^{2)} & = 0.1 \; bar \; (10 \; kPa) \; assumption \end{array}$

Remark:

¹⁾ Δp_{circuit} corresponds to the required pump pressure in the heating circuit and is not to be considered when sizing the AFPB.

 $^{2)}$ Δp_b is differential pressure over flow restrictor.

The differential pressure set value is: $\Delta p_{\text{set value}} = \Delta p_b + \Delta p_{\text{MCV}} = 0.1 + 0.3 \\ \Delta p_{\text{set value}} = 0.4 \text{ bar (40 kPa)}$

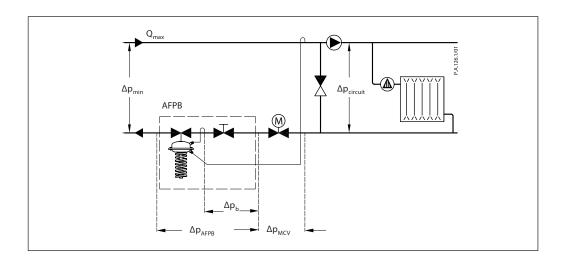
The total pressure loss across the controller is: $\Delta p_{AFPB} = \Delta p_{min} - \Delta p_{MCV} = 0.7 - 0.3$

 $\Delta p_{AFPB} = 0.4 \text{ bar } (40 \text{ kPa})$

Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

k, value is calculated according to formula:

$$k_{v} = \frac{Q_{max}}{\sqrt{\Delta p_{AFPB} - \Delta p_{b}}} = \frac{1.8}{\sqrt{0.4 - 0.1}}$$


$$k_v = 3.3 \text{ m}^3/\text{h}$$

Solution:

The example selects AFPB/VFQ 2 DN 15; k_{vs} value 4,0; with differential pressure setting range 0,1-0,7 bar; flow setting range 0,05-1,4 m³/h.

If other differential pressure is assumed than $\Delta p_b = 0.1$ bar, in order to maintain the k_{vs} value, the flow has to be adjusted using the flow restrictor screw. The new set value (Q-setting) of the assumed differential pressure $(\Delta p_{b\,\text{\tiny NEW}} = 0.2$ bar) is calculated according to formula:

$$Q_{\text{setting}} = \frac{\sqrt{\Delta p_b}}{\sqrt{\Delta p_{\text{bNEW}}}} \times Q_{\text{max}}$$

6 | © Danfoss | 2016.04 VD.CA.B4.02

Sizing (continuous)

- Indirectly connected heating system

Example 2

Motorised control valve (MCV) for indirectly connected heating system requires differential pressure of 0,3 (30 kPa) bar and flow less than 1300 l/h.

Given data:

 $\boldsymbol{Q}_{\text{max}}$ $= 1.3 \text{ m}^3/\text{h} (1300 \text{ l/h})$ Δp_{min} = 1.0 bar (100 kPa) $\Delta p_{\text{exchanger}}$ = 0.05 bar (5 kPa)

 Δp_{MCV} = 0,3 bar (30 kPa) selected $\Delta p_b^{(1)}$ = 0,2 bar (20 kPa) assumption

The differential pressure set value is:

 $\begin{array}{l} \Delta p_{set \, value} = \ \Delta p_b + \Delta p_{exchanger} + \Delta p_{MCV} \\ \Delta p_{set \, value} = 0.2 + 0.05 + 0.3 \\ \Delta p_{set \, value} = 0.55 \ bar \ (55 \ kPa) \end{array}$

The total pressure loss across the controller is:

 $\begin{array}{l} \Delta p_{AFPB} = \Delta p_{min} - \Delta p_{exchanger} - \Delta p_{MCV} \\ \Delta p_{AFPB} = 1,0-0,05-0,3 \end{array}$

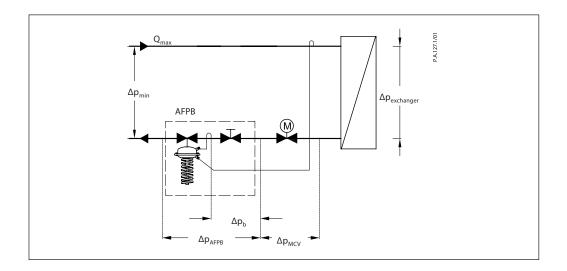
 $\Delta p_{AFPB} = 0,65 \text{ bar } (65 \text{ kPa})$

Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

k, value is calculated according to formula:

$$k_v = \frac{Q_{max}}{\sqrt{\Delta p_{AFPB} - \Delta p_b}} = \frac{1,3}{\sqrt{0,65 - 0,2}}$$

$$k_v = 1.9 \text{ m}^3/\text{h}$$

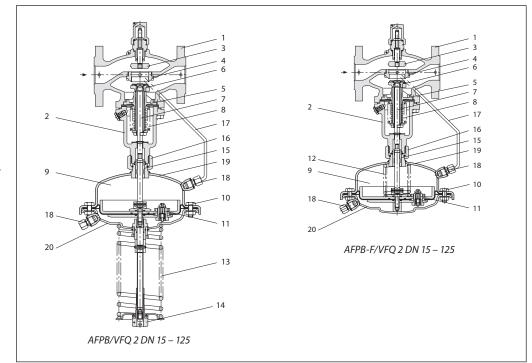

Solution:

The example selects AFPB/VFQ 2 DN 15; k_{vs} value 4,0; with differential pressure setting range 0,1-0,7 bar; flow setting range 0,05-2,0 m³/h.

If other differential pressure is assumed than Δp_b = 0,2 bar, in order to maintain the k_{VS} value, the flow has to be adjusted using the flow restrictor screw. The new set value (Q-setting) of the assumed differential pressure

 $(\Delta p_{_{b\,NEW}}\!=0.1$ bar) is calculated according to

$$\boldsymbol{Q}_{\text{setting}} = \frac{\sqrt{\Delta p_b}}{\sqrt{\Delta p_{b\,\text{NEW}}}} \times \boldsymbol{Q}_{\text{max}}$$



 $^{^{\}scriptscriptstyle{1)}}$ Δp_b is differential pressure over flow restrictor

Design

- 1. Valve body
- 2. Cover
- 3. Adjustable flow restrictor
- 4. Valve seat
- 5. Valve insert
- **6.** Pressure relieved valve cone
- 7. Valve stem
- **8.** Bellows for pressure relief of valve cone
- 9. Actuator
- Control diaphragm for differential pressure and flow control
- 11. Excess pressure safey valve
- **12.** Built in spring for differential pressure and flow control
- **13**. Setting spring for diff. pressure control
- **14.** Adjuster for diff. pressure setting, prepared for sealing
- 15. Stuffing cone
- **16.** Union nut
- 17. Impulse tube
- Compression fitting for impulse tube
- **19.** Upper casing of diaphragm
- **20.** Lower casing of diaphragm

Function

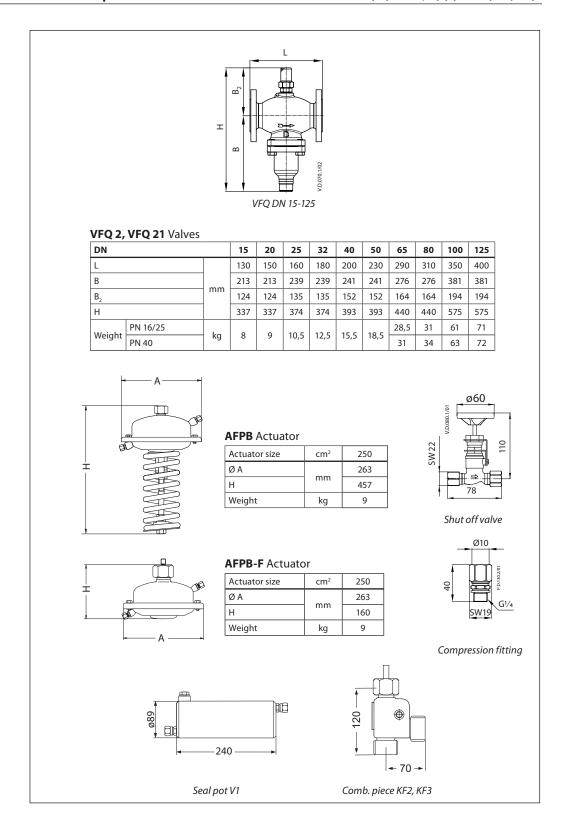
Pressure changes from flow and return pipes are being transferred through the impulse tubes to the actuator chambers and act on control diaphragm for diff. pressure and flow control. The diff. pressure is controlled by means of setting spring for diff. pressure control. Control valve closes on rising differential pressure and opens on falling differential pressure to maintain constant differential pressure. Flow volume is limited by means of the flow restrictor.

Controller is equipped with excess pressure safety valve, which protects control diaphragm for diff. pressure and flow control from too high differential pressure.

Settings

Flow setting

Flow setting is being done by the adjustment of the flow restrictor position. The adjustment can be performed on the basis of flow adjustment diagram (see relevant instructions) and/or by the means of heat meter.


Differential pressure setting

Differential pressure setting is being done by the adjustment of the setting spring for diff. pressure control. The adjustment can be done by means of adjuster for diff. pressure setting and pressure indicators.

8 | © Danfoss | 2016.04 VD.CA.B4.02

Dimensions

10 | © Danfoss | 2016.04 VD.CA.B4.02

VD.CA.B4.02 © Danfoss | 2016.04 | 11

Data sheet Differential pressure controller with flow limitation AFPB(-F) / VFQ 2(1) (PN 16, 25, 40)

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed.

All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

12 | © Danfoss | DHS-SRMT/SI | 2016.04

VD.CA.B4.02