

ABB MEASUREMENT & ANALYTICS | CONFIGURATION MANUAL

Spirit^{IT} Flow-X High accuracy flow computers

Operation and configuration – Gas Metric

Measurement made easy

— Flow-X/P with Flow-X/M module

Introduction

Welcome to the exciting world of Spirit^{IT} Flow-X!

This manual is the operation and configuration manual for the Spirit^{IT} Flow-X Gas Metric application.

There are three reference manuals:

- Volume I This Installation manual, with the installation instructions.
- Volume II The Operation and Configuration manual. This manual consists of a general part and one of the following application-specific parts:
 - IIA Operation and configuration
 - IIB Gas Metric application
 - IIC Liquid Metric application
 - IID Gas US customary units application
 - IIE Liquid US customary units application
- Volume III The manuals for solutions that exceed our standard applications. This volume consists of 1 part:
 - IIIB Function referencere

For more information

All publications of Spirit^{IT} Flow-X are available for free download from:

	Search for:
Spirit ^{IT} Flow-X instruction manual	IM/FlowX-EN
Spirit ^{IT} Flow-X configuration manual	CM/FlowX-EN
Spirit ^{IT} Flow-X gas metric application manual	CM/FlowX/GM-EN
Spirit ^{IT} Flow-X liquid metric application manual	CM/FlowX/LM-EN
Spirit ^{IT} Flow-X gas USC application manual	CM/FlowX/GU-EN
Spirit ^{IT} Flow-X liquid USC application manual	CM/FlowX/LU-EN
Spirit ^{IT} Flow-X function reference manual	CM/FlowX/RF-EN

Table of contents

1	Manual introduction	
	Purpose of this manual	
	Overview	
	Document conventions	3
	Abbreviations	
	Terms and definitions	5
2	Application overview	
	Capabilities	
	Typical meter run configurations	
	Application versions	
	Input signals	
	Output signals	9
	Proving functionality	
	Control features	9
3	Operation	11
	In-use values	
	Flow rates	11
	Temperature	11
	Pressure	12
	Density	13
	Gas Properties	
	Master meter proving	17
	Valve control	
	Flow / pressure control	
	Sampler control	20
4	Configuration	
	Introduction	21
	I/O setup	22
	Forcing I/O	26
	Overall setup	
	Meter run setup	
	Station setup	
	Temperature setup	
	Pressure setup	
	Density setup	54
	Gas properties	
	Analog outputs	
	Pulse outputs	
	Frequency outputs	
	Snapshot report	
	Valve control	
	Flow / pressure control	
	Sampler control	
	Proving	
	Metrological settings	85
5	Maintenance mode	86
6	Calculations	
	Densitometer calculations	87
	Density calculations	
	Flow rates for volumetric flow meters	
	Flow rates for mass flow meters	90

	Base volume flow rate	
	Energy flow rate	
	Meter body correction	
	Flow rate for differential pressure flow devices.	
	Down- to upstream corrections	
	Orifice correction for drain hole	
	Wet gas correction	
	Lockhart-Martinelli	
	Differential pressure cell selection	
	Master meter proving	95
7	Reports	
	Standard reports	
8	Communication	97
8	Communication Standard Modbus communication lists	
8		97
8	Standard Modbus communication lists	97 97
8	Standard Modbus communication lists Omni compatible communication list	97 97 97
8	Standard Modbus communication lists Omni compatible communication list Modbus devices HART devices	97 97 97 98
	Standard Modbus communication lists Omni compatible communication list Modbus devices HART devices Historical Data Archives	97 97 97 97 98 98
	Standard Modbus communication lists Omni compatible communication list Modbus devices HART devices	97 97 97 97 98 98
	Standard Modbus communication lists Omni compatible communication list Modbus devices HART devices Historical Data Archives	97 97 97 97 98 98 98 99
9	Standard Modbus communication lists Omni compatible communication list Modbus devices HART devices Historical Data Archives Standard Data Archives	97 97 97 98 98 99 99 99
9	Standard Modbus communication lists Omni compatible communication list Modbus devices HART devices Historical Data Archives Standard Data Archives MID Compliance	97 97 97 98 98 99 99 99

1 Manual introduction

Purpose of this manual

This Flow-X reference manual is written for a variety of readers:

- The **application developer**, who is interested in all details required to develop a complete flow measurement solution with a Flow-X product.
- The **Instrumentation engineer**, who selects the appropriate flow computer model, assigns inputs and outputs and designs transmitter loops and flow computer functionality
- A more generally **interested reader**, who investigates whether the capabilities and features of Flow-X will satisfy his/her project requirements.

This manual expects the reader to be commonly acquainted with flow measurement principles, such as turbine, orifice and ultrasonic measurements. This manual is not an introduction to these techniques.

Overview

This manual works in conjunction with manual IIA 'Operation and Configuration' that covers the **common** operation and configuration aspects of the Flow-X flow computer.

The Flow-X flow computer family comes with the following 4 standard software applications:

- Gas Metric
- Liquid Metric
- Gas US Customary (USC)
- Liquid US Customary (USC)

Each application can be used for a single meter run or for a meter station consisting of multiple meter runs.

This application manual describes the specific functions and capabilities of the **Gas Metric** Application.

Document conventions

When the book symbol as displayed at the left appears in the text in this manual, a reference is made to another section of the manual. At the referred section, more detailed, or other relevant information is given.

When in this manual a symbol as displayed at the left appears in the text, certain specific operating instructions are given to the user. In such as case, the user is assumed to perform some action, such as the selection of a certain object, worksheet, or typing on the keyboard.

A symbol as displayed at the left indicates that the user may read further on the subject in one of the sample workbooks as installed on your machine.

When an important remark is made in the manual requiring special attention, the symbol as displayed to the left appears in the text

Abbreviations

Throughout this document the following abbreviations are used:

ADC	Analog to Digital converter
Al	Analog Input
AO	Analog Output
API	Application Programming Interface
	An interface that allows an application to interact with another application or operating system, in our case, Flow-X. Most of the Flow-X API is
	implemented through Excel worksheet functions.
ASCII	American Standard Code for Information Interchange.
	A set of standard numerical values for printable, control, and special characters used by PCs and most other computers. Other commonly used
	codes for character sets are ANSI (used by Windows 3.1+), Unicode (used by Windows 95 and Windows NT), and EBCDIC (Extended Binary-Coded
	Decimal Interchange Code, used by IBM for mainframe computers).
CPU	Central Processing Unit
DAC	Digital to Analog Converter
DCS	Distributed Control System
DDE	Dynamic Data Exchange
	A relatively old mechanism for exchanging simple data among processes in MS-Windows.
DI	Digital Input
DO	Digital Output
EGU	Engineering Units
EIA	Electrical Industries Association
FET	Field Effect Transistor
GC	Gas Chromatograph
GUI	Graphical User Interface
HART	Highway Addressable Remote Transducer.
	A protocol defined by the HART Communication Foundation to exchange information between process control devices such as transmitters and
	computers using a two-wire 4-20mA signal on which a digital signal is superimposed using Frequency Shift Keying at 1200 bps.
нмі	Human Machine Interface.
	Also referred to as a GUI or MMI. This is a process that displays graphics and allows people to interface with the control system in graphic form.
	It may contain trends, alarm summaries, pictures, and animations.
I/O	Input/Output
IEEE	Institute for Electrical and Electronics Engineers
ISO	International Standards Organization
ммі	Man Machine Interface (see HMI)
міс	Machine Identification Code. License code of Flow-X which uniquely identifies you computer.
OEM	Original Equipment Manufacturer
P&ID	Piping and Instrumentation Diagram
PC	Personal Computer
РСВ	Printed Circuit Board
PLC	Programmable Logic Controller.
	A specialized device used to provide high-speed, low-level control of a process. It is programmed using Ladder Logic, or some form of structured
	language, so that engineers can program it. PLC hardware may have good redundancy and fail-over capabilities.
RS232	EIA standard for point to point serial communications in computer equipment
RS422	EIA standard for two- and four-wire differential unidirectional multi-drop serial
RS485	EIA standard for two-wire differential bidirectional multi-drop serial communications in computer equipment
RTU	Remote Terminal Unit
SCADA	Supervisory Control and Data Acquisition
SQL	Standard Query Language
SVC	Supervisory Computer
TCP/IP	Transmission Control Protocol/Internet Protocol.
	Transmission Control Protocol/Internet Protocol. The control mechanism used by programs that want to speak over the Internet. It was
	established in 1968 to help remote tasks communicate over the original ARPANET.
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver & Transmitter
URL	Uniform Resource Locator.
	The global address for documents and resources on the World Wide Web.
XML	Extensible Markup Language. A specification for Web documents that allows developers to create custom tags that enable the definition,
	transmission, validation and interpretation of data contained therein.

Terms and definitions

Throughout this manual the following additional terms and definitions are used:

resources, such as files, devices, and even processing power. Another type of network architecture is known as a peer-to-peer architecture. Both client/server and peer-to-peer architectures are widely used, and each has unique advantages and disadvantages. Client/server architectures are sometimes called two-tier architecturesDevice driverA program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware interface card that receives field device messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the contents to the spreadsheet.Engineering unitsEngineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or '°C', and not to a type of unit, as with 'metric' units, or 'imperial' units.EthernetA LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer version, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second.EventAnything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user.	Asynchronous	A type of message passing where the sending task does not wait for a reply before continuing processing. If the receiving task cannot	
resources, such as files, devices, and even processing power. Another type of network architecture is hown as a peer-to-peer architecture. Both client/server and peer-to-peer architectures are widely used, and each has unique advantages. Client/server architectures are sometimes called two-tier architectures are widely used, and each has unique advantages. Client/server architectures are sometimes called two-tier architectures Device driver A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware interface card that receives field device messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the contents to the spreadsheet. Engineering units Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or ''C', and not to a type of unit, as with 'meerit' units, or ''meeria' units, or ''mapalits) per second. Event Anything that happens that is significant to a program, such as a mouse click, a change and point value, or a command from a user. Exception Anytoniciton, such as a hardware interruptor of software enror-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware manufacturers use to make therifield devices. Fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicent, InterBus, and CANopeen. The core of		take the message immediately, the message often waits on a queue until it can be received.	
Another type of network architecture is known as a per-to-peer architecture. Both clent/server and peer-to-peer architectures are widely used, and each has unique advantages and disadvantages. Clent/server architectures are sometimes called tworker architectures. Device driver A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware interface arch that receives field device messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the contents to the spreadsheet. Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or ''C', and not to a type of unit, as with metric units, or "imperial" units. Ethernet A LAB protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps, while the newest version, Gigabit Ethernet supports data transfer rates of 10 Mbps, while the newest version, Gigabit Ethernet supports data transfer rates of 10 Mbps, while the newest version, Gigabit Ethernet supports data transfer rates of 10 Mbps, while the newest version, Gigabit Ethernet supports data to a program, such as a mouse click, a change in a data point valle, or a command from a user. Frequencie Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus As at of communication protocies hardware manufacturers use to make their field devices tail to other fieldbus protocols is the best. Popular types of fieldbus protocols is the best. Popular types of fieldbus protocols is the device fieldbus protocols is the best. Popular types of fieldbus protocols hardware	Client/server	A network architecture in which each computer or process on the network is either a client or a server. Clients rely on servers for	
used, and each has unique advantages and disadvantages. Client/server architectures are sometimes called two-tier architectures Device driver A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware interface card that receives field device messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the content is to the spreadsheet. Engineering units Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or ''C', and not to a type of unit, as with immet' units, or imperial units. Ethernet A AN protocol device/peed by Kerov in cooperation with DEC and Intel in 1976. Standard the newst version, Gigabit Ethernet supports data transfer rates of 10 Mbps, while the newst version, Gigabit Ethernet supports data transfer rates of 100 Mbps, while the newst version, Gigabit Ethernet supports in to a program, such as a mouse click, a change in a data point value, or a command from a user. Event Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus Protocols are often supported on liculude Modos, Hart, Profibus, Devicenet, InterBus, and CANDore, the effect devices as indicated by the flow meter and corrected actual volume, as indicated by the flow meter were and corrected for the flow meter soft and protocols tare often supported indicated by the flow meter were software interraces). Fieldbus The corrected actual volume, asi indicated by the flow meter were s		resources, such as files, devices, and even processing power.	
Device driver A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware interface card that receives field devices messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the contents to the spreadsheet. Engineering units as each transport the manual refers in general to the units of a tag, for example 'bar', or ''C, and not to a type of unit, as with 'metric' units, or 'Imperial' units. Ethernet A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer wersion, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports data transfer rates of 100 Mbps. The tende to tag point value, or a command from a user. Exception Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocol is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicent, InteRus, and CANopen. Gross volume The core of flow-x that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Pere-to-peer A type of network in which each workstation has sequinideat and prosontial prognosibilities. <		Another type of network architecture is known as a peer-to-peer architecture. Both client/server and peer-to-peer architectures are widely	
interface card that receives field device messages and maps their content into a region of memory on the card. The device driver then reads this memory and delivers the contents to the spreadsheet. Engineering units Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or ''C', and not to a type of unit, as with 'metti' units, or 'imperial' units. Ethernet A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 100 Mbps, while the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, while the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, while the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, while the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, while the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, while the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, While the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, While the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, While the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, While the newset version, Gigabit Ethernet supports data transfer rates of 100 Mbps, While the outper support data transfer rates of 100 Mbps, While the outper support data transfer rates of 100 Mbps, While the outper support data transfer rates of 100 Mbps, While the outper support data transfer rates of 100 Mbps, While the outper support data transfer rates of 100 Mbps, While the data point the support data transfer rates of 100 Mbps, While the data point as support data transfer rates of 100 Mbps, While the data point as the data point as trates of 100 Mbps, While the meters).		used, and each has unique advantages and disadvantages. Client/server architectures are sometimes called two-tier architectures	
reads this memory and delivers the contents to the spreadsheet. Engineering units Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or ''C', and not o a type of unit. Ethernet A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps. The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer wersion, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit (1000-Base-T or Fast Ethernet supports data transfer rates of 10 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000-Base-T or Fast Ethernet or opgram, Such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware memory hard data point value, or a command from a user. Gross volume The corrected actual volume, as indicated by the flow meter and corrected for the flow devices. Fieldbus protocols are offen supported by manufacturers of sensor hardware. There are debates and CANopen. Indicated volume, as indicated by the flow meter and corrected for the flow meters). </td <td>Device driver</td> <td>A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware</td>	Device driver	A program that sends and receives data to and from the outside world. Typically a device driver will communicate with a hardware	
Engineering units Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or ''C', and not to a type of unit, as with 'metric' units, or 'mperia' units. Ethernet A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps, while the newst version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second. Event Anything that happens that is significate to a program, such as a mouse click, a change in a data point value, or a command from a user. Event Anything that happens that is significate to a program, such as a mouse click, a change in a data point value, or a command from a user. Event Anytointig that happens that is significate to a program, such as a mouse click, a change in a data point value, or a command from a user. Event Anytointig that happens that is significate to a program, such as a mouse click, a change in a data point value, or a command from a user. Event Anytointig that happens that is significated to program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software enror-handler, that cheads as to which of the different field bevices. Fieldbus protocols is the best: Applat ypes of fieldbus protocol include Modbus, Hart, Profibus, Devicent, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and/or software intereflow or construction.		interface card that receives field device messages and maps their content into a region of memory on the card. The device driver then	
as with "metric units, or "imperial" units. Ethernet A LAP protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mpps, The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer wersion, called 100-Base - T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second. Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception As et of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocols are often supported by manufactures of sensor hardware. There are debates as to which of the different fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and correction being applied. Kernel The uncorrected actual volume; as indicated by the flow meter and correction being applied. Kernel The uncorrected actual volume; as indicated to serving the others. Peer to-peer entworks are generally simple, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes solution and/or software in the solution. Polling A method of updating is generally faster. Process visualization As yester for manditing and controlling for production processes, and managing related data.		reads this memory and delivers the contents to the spreadsheet.	
Ethernet A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Stundard Ethernet supports data transfer rates of 10 Mbps: The Ethernet specification served as the basis for the IEE 802.3 standard, which specifies physical and lower software layers. A new version, called 100-Base T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second. Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus Protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbucyces. Fieldbus protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbucyces is the best. Popular types of fieldbus protocol include Modbus, Hat. Typefibus, Devicenet, InteRus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meters.) Indicated volume The uncorrected actual volume; as indicated by the flow meter and correction being applied. Kemel The correctod actual volume; as indicated by the flow meter and correction being applied. Ren A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others.	Engineering units	Engineering units as used throughout this manual refers in general to the units of a tag, for example 'bar', or '°C', and not to a type of unit,	
The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer version, cilled 100-808-et Tor Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second. Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware manufacturers to the on make their field devices talk to other field devices. Fieldbus protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbus protocols include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume, as indicated by the flow meter and correct of or the flow meter adito and the viscosity influence (for helical turbine and PD meters). Indicated volume The uncorrected actual volume, as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basic functions, such as hardware mator's oftware are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term PZP. Poling A method of updating is generally faster. Process visualization A system for monting and controlling for production processes, and managing related d		as with 'metric' units, or 'imperial' units.	
 version, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports rates of 1 gigabit (1000 megabits) per second. Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus Protocols are of communication protocols that various hardware mandracturers use to make their field devices talk to other field devices. Fieldbus protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicene, Interbus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meter sol. Indicated volume The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, and panding data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally taster. Process visualization of process visualization are alternately used, and refer to the computer software applications othare, with	Ethernet	A LAN protocol developed by Xerox in cooperation with DEC and Intel in 1976. Standard Ethernet supports data transfer rates of 10 Mbps.	
rates of 1 gigabit (1000 megabits) per second Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocols are often supported by munifacturers of sensor hardware. There are debates as to which of the different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basis functions, such as hardware and/or software interfaces; or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has change in data is sent to the first task. This method is most effective when there are few data points has system. Software envisory computer software applications can be built. In this document, althou		The Ethernet specification served as the basis for the IEEE 802.3 standard, which specifies physical and lower software layers. A newer	
rates of 1 gigabit (1000 megabits) per second Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocols are often supported by munifacturers of sensor hardware. There are debates as to which of the different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basis functions, such as hardware and/or software interfaces; or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has change in data is sent to the first task. This method is most effective when there are few data points has system. Software envisory computer software applications can be built. In this document, althou		version, called 100-Base-T or Fast Ethernet supports data transfer rates of 100 Mbps, while the newest version, Gigabit Ethernet supports	
Event Anything that happens that is significant to a program, such as a mouse click, a change in a data point value, or a command from a user. Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meter calibration curve (if applicable), the meter factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters). Indicated volum The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The corre of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/Server architectures, othere are performance under heavy loads. Peer-to-peer is sometimes shortened to the term PZP. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has software entime divels, which are in turn connected to sensors and production machinery. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typic			
Exception Any condition, such as a hardware interrupt or software error-handler, that changes a program's flow of control. Fieldbus A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field bus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meter calibration curve (if applicable), the meter factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters). Indicated volume The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Filow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortned to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring a	Event		
Fieldbus A set of communication protocols that various hardware manufacturers use to make their field devices talk to other field devices. Fieldbus protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meters). Indicated volume The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The corre of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to sensors and production machinery. The term 'process visualization' are alternately used,	Exception		
protocols are often supported by manufacturers of sensor hardware. There are debates as to which of the different fieldbus protocols is the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meter calibration curve (if applicable), the meter factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters). Indicated volue The correct actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually don to ffer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally task of production processes, and managing related data. Typically such a system for monitoring and controlling for production processes, and managing related data. Typically such a system for monitoring and controlling for production processes, and managing related data. Typically such a system for monitoring and controlling fo			
the best. Popular types of fieldbus protocol include Modbus, Hart, Profibus, Devicenet, InterBus, and CANopen. Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meter calibration curve (if applicable), the meter factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters). Indicated volume The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to esternal devices, which are in turn connected to sensors and production machinery. Software M extrema devices disupervisory software. Protocol<			
Gross volume The corrected actual volume; as indicated by the flow meter and corrected for the flow meter calibration curve (if applicable), the meter factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters). Indicated volume; as indicated by the flow meter without and PD meters). Indicated volume; as indicated by the flow meter without and PD meters). Indicated volume; as indicated by the flow meter without and vors cort being applied. Kernel The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are decicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to supervisory computer software applications can be built. In this document, although strictly not correct, the term 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to th			
factor, the meter body expansion and the viscosity influence (for helical turbine and PD meters). Indicated volume Indicated volume The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow: X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are delicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortend to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to sensors and production machinery. The term 'process visualization software in this document is generally used for software applications that can be realized with Spirit ^T eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query	Gross volume		
Indicated volume The uncorrected actual volume; as indicated by the flow meter without any correction being applied. Kernel The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to sensors and production machinery. Software The term 'process visualization software' in this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory' computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory' computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory' computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory computer aprications and be built. In this document, although			
Kernel The core of Flow-X that handles basic functions, such as hardware and/or software interfaces, or resource allocation. Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to servinory and production machinery. Software The term 'process visualization software' in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{T1} eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a	Indicated volume		
Peer-to-peer A type of network in which each workstation has equivalent capabilities and responsibilities. This differs from client/server architectures, in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery. The term 'process visualization offware' in this document is generally used for software with which SCADA software, HMI software, or supervisory, and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit'' & XLaret, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OS17-Layer Communication Model. Query In SCADA/HMI terms a message from a computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.			
in which some computers are dedicated to serving the others. Peer-to-peer networks are generally simpler, but they usually do not offer the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to sensors and production machinery. The term 'process visualization software in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{IT} eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the DSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determine			
the same performance under heavy loads. Peer-to-peer is sometimes shortened to the term P2P. Polling A method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster. Process visualization A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery. The term 'process visualization software' in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{TI} eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the prog	reel-to-peel		
PollingA method of updating data in a system, where one task sends a message to a second task on a regular basis, to check if a data point has changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster.Process visualizationA system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery. The term 'process visualization software' in this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory' computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{TI} eXLerate, a PC-based supervisory software.ProtocolAn agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model.QueryIn SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.Real-timeThe characteristic of determinism applied to computer hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing.Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial device			
changed. If so, the change in data is sent to the first task. This method is most effective when there are few data points in the system. Otherwise, exception handling is generally faster.Process visualizationA system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery. The term 'process visualization software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{To} eXLerate, a PC-based supervisory software.ProtocolAn agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model.QueryIn SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.Real-timeThe characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a	Polling		
Otherwise, exception handling is generally faster. Process visualization software A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery. The term 'process visualization software' in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^T eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. <td>roning</td> <td></td>	roning		
Process visualization software A system for monitoring and controlling for production processes, and managing related data. Typically such a system is connected to external devices, which are in turn connected to sensors and production machinery. The term 'process visualization software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^T eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing whe			
softwareexternal devices, which are in turn connected to sensors and production machinery. The term 'process visualization software' in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^T eXLerate, a PC-based supervisory software.ProtocolAn agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model.QueryIn SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.Real-timeThe characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing.TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current val	Process visualization		
The term 'process visualization software' in this document is generally used for software with which SCADA software, HMI software, or supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{IT} eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O addr			
supervisory computer software applications can be built. In this document, although strictly not correct, the terms 'SCADA, 'HMI, 'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{IT} eXLerate, a PC-based supervisory software. Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	sortware		
'supervisory', and 'process visualization' are alternately used, and refer to the computer software applications that can be realized with Spirit ^{IT} eXLerate, a PC-based supervisory software.ProtocolAn agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model.QueryIn SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.Real-timeThe characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing. A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.			
Spirit ^{IT} eXLerate, a PC-based supervisory software.ProtocolAn agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model.QueryIn SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.Real-timeThe characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing. A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.			
Protocol An agreed-up format for transmitting data between two devices. In this context, a protocol mostly references to the Data Link Layer in the OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.			
OSI 7-Layer Communication Model. Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	Protocol		
Query In SCADA/HMI terms a message from a computer to a client in a master/client configuration utilizing the message protocol with the purpose to request for information. Usually, more than 1 data-point is transmitted in a single query. Real-time The characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	11000001		
purpose to request for information. Usually, more than 1 data-point is transmitted in a single query.Real-timeThe characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing. TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	Query		
Real-timeThe characteristic of determinism applied to computer hardware and/or software. A real-time process must perform a task in a determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing. A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	query		
determined length of time. The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing.TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	Real-time		
The phrase "real-time" does not directly relate to how fast the program responds, even though many people believe that real-time means real-fast.ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing.TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	itea-time		
real-fast. Resource Any component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.			
ResourceAny component of a computing machine that can be utilized by software. Examples include: RAM, disk space, CPU time, real-world time, serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc.SynchronousA type of message passing where the sending task waits for a reply before continuing processing.TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.			
serial devices, network devices, and other hardware, as well as O/S objects such as semaphores, timers, file descriptors, files, etc. Synchronous A type of message passing where the sending task waits for a reply before continuing processing. Tag A 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	Resource		
SynchronousA type of message passing where the sending task waits for a reply before continuing processing.TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	NC3001CC		
TagA 'tag' as used within this document refers to a data point existing in the tag database, with a number of properties, such as its assigned I/O address, current value, engineering units, description, alias name, and many others.	Synchronous		
I/O address, current value, engineering units, description, alias name, and many others.			
	Tay		
	Web Server		

2 Application overview

This chapter lists the features of the Gas Metric application and shows some typical meter run configurations that are covered by it.

Capabilities

The Gas Metric application has the following capabilities:

- Supports both single meter runs and meter stations consisting of several meter runs.
- Support of turbine, PD, ultrasonic, Coriolis, orifice, venturi, V-cone and nozzle flow meters
- Supports any type of flow meters outputting a flow rate through an analog, HART or Modbus signal
- Analog, HART and Modbus options for live inputs
- Last good, keypad and fallback options for failing input signals
- Automatic switching from HART to analog signal in case of HART failure
- Automatic use of backup signal for smart meters with an additional pulse output
- Data valid input (in combination with a pulse input)
- One, two and three dP cells
- Wet gas correction according to De Leeuw / Reader-Harris
- One or two densitometers on stream and station level
- One or two specific gravity transducers on stream and station level
- One or two gas chromatographs on stream and station level
- Meter body correction for pressure and temperature
- Process inputs for density, base density and specific gravity
- Selectable meter factor / meter K-factor interpolation curves (12 points)
- Hourly and daily totals and averages
- Additional 2 freely definable periods for totals and averages
- Several compressibility algorithms for line and base conditions: AGA-8, ISO-6976, SGERG, NX-19, GPA-2172, GERG, MR113
- Built-in support for Altosonic, Caldon, Sick, FMC, GE, Instromet and other ultrasonic flow meters
- Built-in support for Micro Motion and Endress+Hauser Coriolis flow meters
- Built-in support for ABB, Siemens, Instromet, Yamatake, Daniel and other chromatographs
- User-definable HART and Modbus interface to any other type of flow meter and gas chromatograph
- Orifice, venturi, V-cone and nozzle standards: ISO-5167, AGA-3
- AGA-10 for velocity of sound verification
- Cross-module I/O sharing
- Indication of total rollover on reports
- Indication of input override / failure on reports
- Diagnostic displays for smart meters
- Station functionality
- Forward and reverse totalizers and averages
- Maintenance totalizers
- Accountable / non-accountable totalizers

- Valve control
- Flow / pressure (PID) control
- Sampler control
- Remote station functionality
- Master meter proving
- Daily, hourly, period A and period B reports (run/station)
- Daily events and alarm reports
- Snapshot reports (run/station)
- Proving reports
- Daily, hourly, period A and period B historical data archives
- Complete Modbus tag list (32 bits registers)
- Abbreviated Modbus tag list (16 bits registers)
- Omni compatible tag list (v27)

Typical meter run configurations

The application has been designed for gas flow metering stations consisting of one or more parallel meter runs with all values and flow computations in metric units.

The application supports continuous operation with hourly and daily custody transfer data.

For meter stations the meter runs may run independently or with a common density or gas composition input.

The following typical meter stations are supported:

- Single meter run
- Meter station with independent meter runs that run different products with one or two gas chromatographs and/or densitometers installed on each run.
- Meter station with multiple meter runs that run one common product with one or two common gas chromatographs and/or densitometers on the header.
- Meter station with an additional run for master meter proving (optional cross-over valves).

A **single Flow-X/M module** in a Flow-X/S, Flow-X/K or Flow-X/R enclosure is typically used for a single meter run. A single module can also be used to control a meter station and/or proving, whereby it communicates to a number of remote Flow-X/M modules that control the meter run(s). In this case each Flow-X/M is running its own single stream application. For station/proving functionality, a separate Flow-X/M can be used, which communicates to up to 8 remote run Flow-X/M modules. Alternatively, station and/or master meter proving functionality can be enabled on the first run module. This will then be a combined station / proving / run module with one local run (run 1) and up to 7 remote runs (runs 2 to 8).

A **Flow-X/P** can control metering stations of maximum 4 meter runs. For each meter run the Flow-X/P must be equipped with a Flow-X/M module. All station and proving functionality is executed by the Flow-X/P panel and the meter run functionality is executed by the individual Flow-X/M modules. In this case the application has to be configured as a single application, which is sent to the Flow-X/P as a whole.

A **Flow-X/C** can control metering stations of maximum 3 meter runs. All meter run functionality, station functionality and proving functionality is executed by the Flow-X/C, which is running a dedicated multi-stream application.

Example

Figure 1: Metering station with 2 meter runs and common on-line analyzers (gas chromatograph / densitometer) on the header

For this metering station the following flow computer configurations can be used:

- One Flow-X/P with 2 Flow-X/M modules, one for each meter run. Each module handles 1 meter run and the panel handles station functionality (station totals and common analyzers).
- 3 Flow-X/M modules in Flow-X/S, Flow-X/K or Flow-X/R enclosures:
 - 2 Flow-X/M modules for the meter runs
 - 1 Flow-X/M module for the station functionality
 The station module communicates to the run modules to
 read the totalizer data and to send the common analyzer
- values. 2 Flow-X/M modules in Flow-X/S, Flow-X/K or Flow-X/R
 - enclosures: - 1 Flow-X/M module that controls the station and
 - meter run 1
 - 1 Flow-X/M that controls meter run 2

The combined station/run module communicates to the other run module to read the totalizer data and to send the common analyzer values.

• Flow-X/C with multi-stream application, which handles station functionality and both runs.

In each of the above configurations, the station may also include proving logic (not shown in the picture).

Application versions

The application comes in 3 separate versions:

- Full application, to be used for single stream and remote station / remote run configurations on version 1 hardware (X/M, X/P1) and version 2 hardware (X/M, X/C, X/P1).
- Abridged application, to be used for multiple stream X/P applications (X/P2, X/P3, X/P4) on version 1 hardware. In order to fit into the version 1 hardware's limited memory, the following restrictions apply:
 - Single flow direction (no reverse totals and averages)

- Only 2 sets of period totals and averages (daily and a configurable period A)
- V2 3runs application for multiple stream applications on version 2 hardware, running up to 3 runs within one X/C, X/M or X/P1.



Figure 2: Flow chart for application selection

Input signals

The application can process one or more gas meter runs. The following type of I/O can be configured:

- Flow meter input
- Process inputs
- Status inputs
- Gas Chromatograph inputs
- Densitometer inputs
- Specific gravity transducer inputs

Flow meter input

The application supports one flow meter input per meter run.

The following types of flow meter input are supported:

Input type	Meant for
Pulse input	Any flow meter that provides a single or dual pulse output that represents the volumetric or mass quantity. Typically used for: • Turbine meters
	PD meters

Input type	Meant for
	Ultrasonic flow meters
	Coriolis flow meters
Smart input	Any flow meter that provides a Modbus, HART or
	analog output that represents the volumetric or
	mass quantity or flow rate.
	Typically used for:
	Ultrasonic flow meters
	Coriolis flow meters
Smart / pulse input	Typically used for ultrasonic and coriolis flow meters
	that provide both a 'smart' output and a pulse
	output. Either output signal may be selected as the
	primary signal. The secondary signal is used in case
	the primary signal fails.
Orifice	Orifice plates according to ISO-5167 / AGA-3
Venturi	Venturi tubes according to ISO-5167
V-cone	McCrometer V-cone and wafer cone meters
Venturi nozzle	Venturi nozzles according to ISO-5167
Long radius nozzle	Long radius nozzles according to ISO-5167
ISA 1932 nozzle	ISA 1932 nozzles according to ISO-5167

Table 2-1: Flow meter inputs

Process inputs

A process input is a live signal that is a qualitative measurement of the fluid.

A process input can be any of the following types:

- Analog input (0-20 mA, 4-20 mA, 0-5 Vdc, 1-5 Vdc)
- PT100 input (only for temperature measurement)
- HART input
- Modbus input
- Fixed value

The following process inputs are supported:

Process input	Meant for
Meter temperature	Temperature at the flow meter.
	Either one single or two redundant temperature
	transmitters are supported.
	For differential pressure type of flow meters (orifice,
	venturi, V-cone, nozzle) either the temperature at the
	upstream or downstream tapping or the temperature at
	the downstream location, where the pressure has fully
	recovered, may be used.
Meter pressure	Pressure at the flow meter.
	Either one single or two redundant pressure
	transmitters are supported.
	For differential pressure type of flow meters (orifice,
	venturi, V-cone, nozzle) either the pressure upstream or
	downstream of the flow meter may be used.
Density	Temperature at the point where the density
temperature	measurement is taken. This can be at the meter run or at
	the header.
	This input is only used if there is a live density
	measurement, based on a densitometer or observed
	density process input.
Density pressure	Pressure at the point where the density measurement is
	taken. This can be at the meter run or at the header.
	This input is only used if there is a live density
	measurement, based on a densitometer or observed
	density process input.
Observed density	The measured density. This can be taken at the meter
	run or at the header.
	Instead of a measured density the application can also
	determine the meter density from a gas composition or
	a base density or specific gravity input.
Base density	Density at base temperature and pressure. Also called
	standard density
	Either taken at the meter run or header, or calculated.

Process input	Meant for
Specific gravity	Specific gravity at base conditions.
	Either taken at the meter run or header, or calculated.
	Sometimes called relative density, although there is a
	difference between the ideal and real value.
	In the Flow-X specific gravity represents the ideal value
	(uncorrected for compressibility influences).
Relative density	Relative density at base conditions.
	Either taken at the meter run or header, or calculated.
	In the Flow-X relative density represents the real value
	(corrected for compressibility influences)
CO2	Carbon dioxide content
	Only used if the SGERG / AGA8 gross or NX19 calculation
	is enabled
	Either taken at the meter run or at the header.
N2	Nitrogen content
	Only used if the SGERG / AGA8 gross or NX19 calculation
	is enabled
	Either taken at the meter run or at the header.
H2	Hydrogen content
	Only used if the SGERG / AGA8 gross or NX19 calculation
	is enabled
	Either taken at the meter run or at the header.
Heating value	The heating value. Also called calorific value.
	Either taken at the meter run or header, or calculated.
	May represent the higher heating value (superior
	calorific value) or lower heating value (inferior calorific value).
	Used for energy calculations and for SGERG / AGA8
	gross or NX19 calculations.

Table 2-2: Process inputs

Furthermore, the application supports 2 auxiliary temperature inputs, 2 auxiliary pressure inputs and 2 generic auxiliary process inputs, which may be used to read additional process values.

Digital status and command inputs

The application supports the following status and command inputs:

Status input	Purpose
Data validity input	Can be used in case the flow meter provides a status signal that indicates the validity of the flow meter signal. It is typically used by ultrasonic and coriolis flow meters in combination with a pulse signal. The input is used for alarming purposes and to control the accountable totals required for MID.
Flow direction input	Can be used to determine whether the forward or reverse totalizers must be activated.
Valve open input	Indicates if a valve is in the open position or not.
Valve closed input	Indicates if a valve is in the closed position or not.
Valve local / remote status input	Indicates whether a valve is controlled locally (on the valve itself) or remotely (from the flow computer)
Valve fault status input	Indicates whether a valve is in a valid or invalid position
Prove detector	Used in case of master meter proving based on pulses. Signal to simultaneously start / stop master proving on the master meter module and the module of the meter on prove. Has to be connected to the prove start command output of the flow computer that runs the proving logic.
Sampler can full indication	May be used to indicate that a sample can is full
Serial mode indication	Signal that indicates that two meters (usually master meter and meter on prove) are in serial configuration, so only one of the meter readings must be used in the station total. To be used on systems where the meters can be set in serial or parallel mode by means of a cross- over valve. The signal is to be connected to a position indication of the cross-over valve. The meters are in serial mode if the cross-over valve is not closed.

Status input	Purpose	D
Print snapshot	Command to print a snapshot report	Τł
report command		

Additional status and command inputs may be used for userdefined functionality.

Gas chromatographs

The application supports one or two gas chromatographs for each meter run, or one or two gas chromatographs at the header. In case of two gas chromatographs the application uses the gas composition of the primary gas chromatograph (GC) and switches to the backup GC in case the primary GC should fail. Besides of the gas composition being provided by a gas chromatograph there is the option for a gas composition that is communicated by an external device (e.g. a supervisory computer).

Alternatively a fixed gas composition can be used.

Densitometers

The application supports one or two gas densitometers for each meter run, or one or two densitometers at the header. In case of two densitometers the application uses the time period signal of the primary densitometer and switches to the backup densitometer in case the primary densitometer should fail.

Densitometers of make Solartron, Sarasota and UGC are supported.

Specific gravity transducers

The application supports one or two gas Solartron specific gravity transducers for each meter run, or one or two specific gravity transducers at the header. In case of two transducers the application uses the time period signal of the primary transducer and switches to the backup transducer in case the primary transducer should fail.

Output signals

The application supports the following outputs

- Analog outputs
- Status outputs
- Pulse outputs

Analog outputs

Each flow module provides 4 analog outputs. Each output may be configured to output any process variable (e.g. the volume flow rate or the meter temperature) or a PID control output.

The application supports flow / pressure control for each individual meter run, or for the station as a whole. One analog output per PID loop is used for controlling the corresponding flow control / pressure control valve.

Analog output	Purpose
Flow and process	To output the actual flow rate, density, pressure,
values	temperature, etc.
PID control	For flow / pressure control

Digital status and command outputs

The application supports the following digital outputs:

Status output	Purpose
Valve commands	Valve open / close or forward / reverse commands.
Sampler pulse command	Command to the sampler to grab one sample
Prove start command	Command to simultaneously start / stop pulse counting on the master meter module and the module of the meter on prove.
Can selection output	Selects a sample can
Flow direction output	Indicates that the reverse totals are active
FC duty status output	Only applicable in case of a pair of redundant flow computers. Indicates that the flow computer is on duty.

Additional status and command outputs may be used for userdefined functionality.

Pulse outputs

The application supports the configuration of up to 4 pulse outputs per flow module to drive electro-mechanical counters. Alternatively the pulse outputs can be used for sampling control.

Proving functionality

The application supports master meter proving.

Master meter proving can be executed based on pulse counting or on totalizer latching. In the first case the meter on prove and master meter volumes are calculated from the pulse counts of both meters. In the second case the totalizers are calculated from the latched cumulative totalizers at the start and end of the prove.

The number of required successful prove runs and the passes per run can be set, as well as the repeatability limit. A repeatability check is performed either on the calculated meter factor or on the number of counted pulses. Either a fixed or a dynamic repeatability limit can be applied to determine when the required number of successful runs has been reached. The dynamic limit is in accordance with the method described in API 4.8 appendix A.

Control features

Sample control

The application supports control of a sampler. Single and twin can samplers are supported. Several algorithms can be used for determining the time or metered volume between grabs.

Valve control

The application provides control of run inlet and outlet valves and crossover valves. This includes logic to manually open or close the valves, detailed status info and the generation of valve failure and travel timeout alarms.

Additional valve sequencing logic can be defined using the Flow-Xpress configuration software through additional Calculations. Examples are to be found in the application file 'Calculation Examples.xls'.

Flow / pressure control

The application supports PID control for Flow / Pressure Control Valves. PID control can be configured either on run level (separate control valves for individual meter runs) or at station level (one control valve for the whole station consisting of multiple runs). Furthermore a separate prover control valve can be controlled.

PID control can be configured as flow control, pressure control, or flow control with pressure monitoring.

3 Operation

This chapter describes the operational features of the flow computer that are specific for the Flow-X Gas Metric application.

General operational functions such as report printing,

alarm acknowledgement, as well as descriptions of the LCD display, the touchscreen (Flow-X/P and Flow-X/C) and the web interface are described in manual IIA 'Operation and Configuration'.

Most of the displays described below are only visible after logging in with a username and password of security level 'operator (500)' or higher.

If no user has logged on, only a limited number of displays are visible, showing a short summary of process values, flow rates, cumulative totalizers and in-use gas composition.

In-use values

This display gives an overview of the actual process values, such as temperature, pressure and density, as well as the main calculation results, such as heating value and compressibility.

Display \rightarrow In-use values

Flow rates

This display shows the actual flow rates.

Display \rightarrow Flow rates

The following operational settings are available for the flow rates:

Process alarm limits

The limits in this section are used to monitor the flow rate. The flow computer generates an alarm if the flow rate passes any of these limits.

Hi hi limit	500	Limit for the flow rate high high alarm [unit/hr]*
Hi limit	500	Limit for the flow rate high alarm [unit/hr]*
Lo limit	500	Limit for the flow rate low alarm [unit/hr]*
Lo lo limit	500	Limit for the flow rate low low alarm [unit/hr]*
Rate of	500	Limit for the flow rate rate of change alarm
change limit		[unit/hr/sec]*

*Limits are based on the primary flow rate from the flow meter. Therefore, units are either [m3/hr] or [kg/hr], depending on the meter type.

Temperature

A separate operator display is available for every temperature input.

 $Display \rightarrow Temperature$

Depending on the actual configuration, displays are available for the following temperature inputs:

- <Run>, Meter temperature
- <Run>, Density temperature
- Station, Density temperature
- Auxiliary temperature 1/2

The following operational settings are available for each applicable temperature input:

Override

These settings can be used to switch between the (live) process value and a user definable fixed override value. The flow computer generates an alarm if the override value is in use.

During normal operation the use of override values should be avoided. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Override	rride 500	Temperature override selection
		0: Disabled
		The live input value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Override	500	Temperature override value [°C]

Process alarm limits

The limits in this section are used to monitor the temperature. The flow computer generates an alarm if the temperature passes any of these limits.

Hi hi limit	500	Limit for the temperature high high alarm [°C]
Hi limit	500	Limit for the temperature high alarm [°C]
Lo limit	500	Limit for the temperature low alarm [°C]
Lo lo limit	500	Limit for the temperature low low alarm [°C]
Rate of	500	Limit for the temperature rate of change alarm
change limit		[°C/sec]

Transmitter A/B

Only applicable to the meter temperature. If the meter run is equipped with two (redundant) meter temperature transmitters, then each individual transmitter can be put out of service. If one transmitter is out of service the flow computer generates an alarm and uses the (live) value from the other transmitter.

If both transmitters are out of service (a situation that should be avoided during normal operation) the flow computer switches

over to the last good, fallback or override value (depending on the configuration). On MID compliant systems this means that the accountable totalizers are stopped and the non-accountable totalizers are activated.

Meter temperature A/B out of service	500	Temperature transmitter A / B out of service selection
		0: Disabled The transmitter value is used for the calculations
		1: Enabled The transmitter value is not used for the calculations

Pressure

A separate operator display is available for every pressure input.

Display \rightarrow Pressure

Depending on the actual configuration, displays are available for the following pressure inputs:

- <Run>, Meter pressure
- <Run>, Density pressure
- Station, Density pressure
- Auxiliary pressure 1/2

The following operational settings are available for each applicable pressure input:

Input units 1000	Pressure units
	1: Absolute
	The input value is an absolute pressure [bara]
	2: Gauge
	The input value is a gauge pressure [barg] (i.e. relative to the atmospheric pressure)
	1000

Override

These settings can be used to switch between the (live) process value and a user definable fixed override value. The flow computer generates an alarm if the override value is in use.

During normal operation the use of override values should be avoided. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Override 500	Pressure override selection	
		0: Disabled
		The live input value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Override	500	Pressure override value [bar]*

Process alarm limits

The limits in this section are used to monitor the pressure. The flow computer generates an alarm if the pressure passes any of these limits.

Hi hi limit	500	Limit for the pressure high high alarm [bar]*
Hi limit	500	Limit for the pressure high alarm [bar]*
Lo limit	500	Limit for the pressure low alarm [bar]*
Lo lo limit	500	Limit for the pressure low low alarm [bar]*
Rate of	500	Limit for the pressure rate of change alarm [bar/sec]
change limit		

*Either [bar(a)] or [bar(g)], depending on the selected input units

Transmitter A/B

Only applicable to the meter pressure. If the meter run is equipped with two (redundant) meter pressure transmitters, then each individual transmitter can be put out of service. If one transmitter is out of service the flow computer generates an alarm and uses the (live) value from the other transmitter.

If both transmitters are out of service (a situation that should be avoided during normal operation) the flow computer switches over to the last good, fallback or override value (depending on the configuration). On MID compliant systems this means that the accountable totalizers are stopped and the non-accountable totalizers are activated.

Meter pressure A/B out of service	500	Pressure transmitter A / B out of service selection
		0: Disabled The transmitter value is used for the calculations
		1: Enabled
		The transmitter value is not used for the calculations

Density

Depending on the configuration the following density displays may be available:

- Observed density
- Base density
- Specific gravity
- Relative density
- Meter density
- Densitometer
- Densitometer selection
- Specific gravity transducer
- Specific gravity transducer selection

Display \rightarrow Density

Observed density, base density, specific gravity and relative density

The flow computer has separate operator displays for observed density, base density, specific gravity and relative density. The observed density display is only visible in case of a live density input, f.e. a densitometer. The specific gravity display is only visible in case of a live specific gravity input, f.e. a specific gravity transducer. The relative density display is only visible in case of a live relative density input, f.e. if the relative density is read from a Gas Chromatograph.

For observed density, base density, specific gravity and relative density the following operational settings are available: **Override**

These settings can be used to switch between the (live) process value and a user definable fixed override value. The flow computer generates an alarm if the override value is in use.

During normal operation the use of override values should be avoided. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Override 500	Density / gravity override selection	
	0: Disabled	
		The live / calculated value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Override	500	Density/gravity override value (*)

Process alarm limits

The limits in this section are used to monitor the density / gravity. The flow computer generates an alarm if the density / gravity passes any of these limits.

Hi hi limit	500	Limit for the density/gravity high high alarm (*)
Hi limit	500	Limit for the density/gravity high alarm (*)
Lo limit	500	Limit for the density/gravity low alarm (*)
Lo lo limit	500	Limit for the density/gravity low low alarm (*)
Rate of	500	Limit for the density/gravity rate of change alarm
change limit		[(*)/sec]

*Units are [kg/m3] for the observed density, [kg/sm3] for the base density and [-] (dimensionless) for the specific gravity and relative density.

Meter density

Depending on the density configuration, the meter density (density at meter temperature and pressure) is calculated from the observed density or from the base density.

For the meter density the following operational settings are available:

Override

These settings can be used to switch between the calculated meter density value and a user definable fixed meter density value. The flow computer generates an alarm if the override value is in use.

During normal operation the use of override values should be avoided. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Meter	500	Meter density selection
density		0: Disabled
override		The calculated value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Meter density override	500	Meter density override value [kg/m3]

Densitometers

Depending on the density configuration the following densitometer displays may be available:

- Run: one or two densitometers (A / B)
- Station: one or two densitometers (A / B)

For each densitometer the following settings are available:

Override

The time period inputs of the densitometers can be manually overridden. This feature is meant for test purposes only. It requires security level 1000 ('Engineer'). During normal operation the use of override values should be avoided.

The flow computer generates an alarm if the override value is in use. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Time period	1000	Time period input override selection
override		0: Disabled
		The live input value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Time period override	1000	Time period input override value [microseconds]

Process alarm limits

The limits in this section are used to monitor the densitometer time period signal. The flow computer generates an alarm if the time period passes any of these limits.

500	Limit for the time period input high high alarm [microseconds]
500	Limit for the time period input high alarm [microseconds]
500	Limit for the time period input low alarm [microseconds]
500	Limit for the time period input low low alarm [microseconds]
500	Limit for the time period input rate of change alarm [microseconds /sec]
	500 500 500

Densitometer selection

If two (redundant) densitometers are available, then a separate 'Densitometer selection' display is available, which can be used to specify which densitometer value is used in the calculations.

Densitometer	500	Densitometer selection mode.
select mode		1: Auto-A
		Densitometer B is only used if densitometer A
		fails and densitometer B is healthy.
		Densitometer A is used in all other cases.
		2: Auto-B
		Densitometer A is only used if densitometer B
		fails and densitometer A is healthy.
		Densitometer B is used in all other cases.
		3: Manual-A
		Always use densitometer A irrespective of its
		failure status
		4: Manual-B
		Always use densitometer B irrespective of its
		failure status

Specific gravity transducers

Depending on the density configuration the following specific gravity transducer displays may be available:

- Run: one or two specific gravity transducers (A / B)
- Station: one or two specific gravity transducers (A / B)

For each SG transducer the following settings are available:

Override

The time period inputs of the specific gravity transducers can be manually overridden. This feature is meant for test purposes only. It requires security level 1000 ('Engineer'). During normal operation the use of override values should be avoided.

The flow computer generates an alarm if the override value is in use. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Time period	1000	Time period input override selection
override		0: Disabled
		The live input value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Time period override	1000	Time period input override value [microseconds]

Process alarm limits

The limits in this section are used to monitor the time period signal from the specific gravity transducer. The flow computer generates an alarm if the time period passes any of these limits.

Hi hi limit	500	Limit for the time period input high high alarm [microseconds]
Hi limit	500	Limit for the time period input high alarm [microseconds]
Lo limit	500	Limit for the time period input low alarm [microseconds]
Lo lo limit	500	Limit for the time period input low low alarm [microseconds]
Rate of change limit	500	Limit for the time period input rate of change alarm [microseconds /sec]

Specific gravity transducer selection

If two (redundant) specific gravity transducers are available, then a separate 'Specific gravity transducer selection' display is available, which can be used to specify which specific gravity transducer value is used in the calculations.

SG transducer	500	Specific gravity transducer selection mode.
select mode		1: Auto-A
		SG transducer B is only used if SG transducer A
		fails and SG transducer B is healthy. SG transducer
		A is used in all other cases.
		2: Auto-B
		SG transducer A is only used if SG transducer B
		fails and SG transducer A is healthy. SG transducer
		B is used in all other cases.
		3: Manual-A
		Always use SG transducer A irrespective of its
		failure status
		4: Manual-B
		Always use SG transducer B irrespective of its
		failure status

Gas Properties

The 'Gas properties' section contains the following displays:

- In-use composition
- Override composition
- GC selection
- Composition limits
- Heating value
- CO2 input
- N2 input
- H2 input
- Velocity of sound
- Humidity

Display \rightarrow Gas Properties

In-use composition

This display shows the actual gas composition that is used by the flow computer. It also shows other gas properties, like heating value, specific gravity and relative density, as these are read from a gas chromatograph (if available).

Override composition

This display can be used to specify a fixed override composition and to define whether the measured or override composition is to be used in the flow computer calculations.

The following settings are available:

Composition	500	Composition override selection
override		0: Disabled
		The live composition is used for the calculations
		1: Enabled
		The override composition is used for the calculations

Gas composition

Component override 500 Override values for the following components. Methane (C1) Nitrogen (N2) Carbon Dioxide (CO2) Ethane (C2) Propane (C3) Water (H2O) Hydrogen Sulphyde (H2S) Hydrogen (H2) Carbon Monoxide (CO) Oxygen (O2) i-Butane (iC4) n-Butane (nC4) i-Pentane (iC5) n-Pentane (nC5) neo-Pentane (neoC5) Hexane (C6)* Heptane (C7)* Octane (C8)* Nonane (C9)* Decane (C10) Helium (He)

Argon (Ar)

*If split coefficients are used for C6+, C7+, C8+ or C9+, then these components represent the corresponding Cx+ value. F.e. if a C6+ split is used, which means that the C6 – C10 components are calculated from the C6+ fraction and the C6+ split coefficients, then the C6 value represents the C6+ fraction and the C7 – C10 values are not used.

The Cx+ split coefficients can be entered in the configuration menu: Configuration, Run <x> or Station, Gas properties, Composition

Composition limits

The limits on this display are used to monitor the gas composition that is read from a gas chromatograph or other device. The flow computer generates an alarm if any of the components passes its limits.

For each of the 22 components, the Cx+ fractions and the sum of components the following limits are available:

Component high limit	500	Limit for the component high alarm [%mole]
Component low limit	500	Limit for the component low alarm [%mole]

Depending on the configuration, a composition limit alarm optionally triggers a switch-over to the other gas chromatograph (if available), the override composition or to the last received good composition.

GC selection

This display is only available if two (redundant) gas chromatographs are available.

GC selection mode	500	Controls the selection between the 2 GC's. The gas composition of the selected GC is used for the calculations.
		1: Auto-A
		GC B is only selected when it has no failure, while
		GC A has a failure. GC A is selected in all other
		cases.
		2: Auto-B
		GC A is only selected when it has no failure, while
		GC B has a failure. GC B is selected in all other
		cases.
		3: Manual-A
		GC A is always selected, independent of any failure
		4: Manual-B
		GC B is always selected, independent of any failure

Heating Value

The heating value display contains the following operator settings:

Override

These settings can be used to switch between the (live) process value and a user definable fixed override value. The flow computer generates an alarm if the override value is in use.

During normal operation the use of override values should be avoided. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Override 500	Override selection	
	0: Disabled	
		The live / calculated value is used for the calculations
		1: Enabled
		The override value is used for the calculations
Override	500	Override value (*)

Process alarm limits

The limits in this section are used to monitor the heating value. The flow computer generates an alarm if the heating value passes any of these limits.

Hi hi limit	500	Limit for the heating value high high alarm (*)
Hi limit	500	Limit for the heating value high alarm (*)
Lo limit	500	Limit for the heating value low alarm (*)
Lo lo limit	500	Limit for the heating value low low alarm (*)
Rate of	500	Limit for the heating value rate of change alarm
change limit		[(*)/sec]

*Units are [MJ/sm3] in case of a volume based heating value, [MJ/kg] in case of a mass based heating value.

CO2, H2 and N2

These displays are only available if **SGERG / AGA8 gross** or **NX-19** is selected to calculate the compressibility and / or molar mass (see paragraph 'Calculation Setup').

For CO2, H2 and N2 the following operational settings are available:

Override

These settings can be used to switch between the (live) process value and a user definable fixed override value. The flow computer generates an alarm if the override value is in use.

During normal operation the use of override values should be avoided. On MID compliant systems, using an override value means that the accountable totalizers are stopped and the nonaccountable totalizers are activated.

Override 500	Component override selection
	0: Disabled
	The live value is used for the calculations
	1: Enabled
	The override value is used for the calculations
500	Component override value [%mole]

Process alarm limits

The limits in this section are used to monitor the component value. The flow computer generates an alarm if the component value passes any of these limits.

Hi hi limit	500	Limit for the component high high alarm [%mole]
Hi limit	500	Limit for the component high alarm [%mole]
Lo limit	500	Limit for the component low alarm [%mole]
Lo lo limit	500	Limit for the component low low alarm [%mole]
Rate of	500	Limit for the component rate of change alarm
change limit		[%mole/sec]

Velocity of sound

This display, which is only available in case of a smart meter, shows the measured and calculated velocity of sound.

Humidity

Only applicable if MR113 is used to calculate the compressibility and / or molar mass. The display shows an overview of the measured humidity, humidity temperature and humidity pressure, as well as the calculated water fraction and humidity values.

Master meter proving

The application supports master meter proving.

Displays to view the status of the current and previous prove sequence can be accessed through option "Proving" from the main menu.

The prove displays are only available if proving has been configured.

Proving operation

The proving operation display shows the actual prove status and contains commands to start or abort a prove sequence and to accept or reject the proved meter factor.

A prove can only be started if the prove permissive is 'On'. The prove permissive is 'Off' if:

- Communication to the meter on prove is down (ultrasonic / Coriolis meter)
- Communication to the master meter is down (ultrasonic / Coriolis meter)
- A Custom permissive condition is not met (f.e. a valve must be opened or closed). This is no standard functionality, but it may have been added by the user.

If the prove permissive gets off during a prove sequence, then the sequence is aborted.

The resulting meter factor can be configured to be accepted automatically or manually. In the latter case, after finishing of the prove sequence the flow computer waits for the operator to accept or reject the meter factor.

The meter factor is accepted, provided that:

- A normal (no trial) prove sequence has been started
- The prove sequence has been completed successfully
- The new meter factor has passed all test criteria
- In case of manual acceptance: The operator issues the 'accept meter factor' command before the acceptance timeout period has elapsed

Display \rightarrow Proving, Proving operation

The following settings / commands related to proving are available:

Meter to be proved	500	Number of the meter to be proved. Only applicable if multiple meters are involved.
		Depending on the flow computer configuration the selected meter may be a local run or a 'remote run'.

Prove commands

Start prove sequence	500	Command to start a prove sequence for the selected meter.
Accept meter	500	Command to accept the proved meter factor

Reject meter factor	500	Command to reject the proved meter factor.
Abort prove sequence	500	Command to abort an active prove sequence

Start trial	500	Command to start a trial prove sequence for the
prove		selected meter. A trial prove is the same as a normal
		prove except that the new meter factor will not be
		accepted.

Operational settings

Display \rightarrow Proving, Operational settings

These parameters are described in the paragraphs 'Configuration, Master meter proving, Operational settings' and 'Configuration, Master meter proving, Meter factor tests'.

Valve control

The flow computer supports control of the following valves:

For each run:

- Run inlet valve
- Run outlet valve
- Crossover valve

For each value a separate display is available. Only the displays of those values that have been enabled are shown.

Display \rightarrow Valve control

The following settings and commands are available for each valve:

Manual control

Auto/manual mode	500	Toggles the valve between automatic and manual mode of operation. The automatic mode of operation is meant for systems where valve sequencing is applied, either through the flow computer itself or by an external device (e.g. the DCS or the supervisory computer).
		1: Auto
		2: Manual
Manual open command	500	Issues the command to open the valve. Only accepted if the
		valve operates in manual mode and the valve open permissive is high.
Manual close command	500	Issues the command to close the valve. Only accepted if the valve operates in manual mode and the valve close
		permissive is high.

Flow / pressure control

The flow computer supports flow control, pressure control and flow control with pressure monitoring. Depending on the configuration the appropriate display is shown.

 \mathcal{L} Display \rightarrow Flow control (, Run<x>)

 \mathcal{T} Display \rightarrow Flow control, Station

Display \rightarrow Pressure control (, Run<x>)

 $\mathsf{Display} \rightarrow \mathsf{Pressure\ control,\ Station}$

With <x> the module number of the meter run

The following settings and commands are available for each flow control / pressure control valve:

Flow control

These settings are only available for flow control valves (with or without pressure monitoring).

Flow control setpoint type	500	Toggles between the auto setpoint and the user setpoint. The auto setpoint is meant for systems where the flow rate setpoint is determined by the flow computer itself or by an external device (e.g. to implement a loading curve with several low / high flow rate stages).
		1: Auto
		2: User
Flow control - user setpoint	500	The control loop will try to achieve this setpoint value provided that the setpoint type is set to 'User' and Manual control mode is not enabled. The unit is the same as the controlled process value: [m3/hr] for volume flow meters and [kg/hr] for mass flow meters.

Pressure control

These settings are only available for pressure control valves.

control - provided that Manual control mode is not enabled. setpoint The unit is the same as the controlled process value [bar(g)] or [bar(a)], depending on the configured pressure control units.		500	The unit is the same as the controlled process value [bar(g)] or [bar(a)], depending on the configured
--	--	-----	---

Manual control

Manual	500	Enables or disables manual control.
control mode		0: Disabled Manual control is disabled. The PID control algorithm is enabled. The valve position follows the manual output %.
		1: Enabled Manual control is enabled. The PID control algorithm is disabled. The valve position is controlled by the PID algorithm, which tries to achieve or maintain the flow rate or pressure setpoint.
Manual control output	500	The valve position will be set to this value [%] if Manual control mode is enabled

Sampler control

The following sampling modes are supported:

- Single can
- Twin can

The flow computer both supports flow-proportional and timeproportional sampling.

Flow-proportional sampling can be based on:

- A fixed volume between grabs
- An estimated total metered volume to be sampled until the can is full

Time-proportional sampling can be based on:

- A fixed time between grabs
- An estimated end time when the sample can should be full
- A time period during which the sample can should be filled

The can fill indication can be based on the actual grab count, a digital input (indicating the can full state) or an analog input. The sampler may be stopped automatically when the can is full. Automatic can switchover is also supported.

The sampling logic contains a virtual pulse reservoir which will be filled if the required sample rate is too high for the pulse output. The amount of grabs in the sampler reservoir is limited by a configurable limit. A 'Grabs lost' alarm is generated when the limit is reached. Another limit value (configurable) is used to generate an 'Overspeed alarm' when more pulses are generated than the sampler can handle.

Operator commands are available to start and stop sampling, to reset the whole sampler and to reset a specific can only.

Displays to control and monitor the sampler can be accessed through option "Sampling" from the main menu. The sampling displays are only visible if sampler control has been enabled.

Display \rightarrow Sampling, Sampler control

Start sampler	500	Command to start the pulse output to the sampler and the accumulation of grabs in the grab counter.
Stop sampler	500	Command to stop the generation of pulses the accumulation of grabs in the grab counter.
Reset sampler	500	Resets the accumulated number of grabs of all available cans. Also implies a 'Stop sampler' command.
Selected can	500	Shows the can that is currently in use. Can be used to manually switch control to the other can. Alternatively, the can is automatically selected by the flow computer sampling logic.
Can 1 / 2	500	Enables / disables can 1 / can 2. A can that is disabled won't be used by the flow computer sampler logic.
Reset can 1 / 2	500	Command to reset the number of grabs in the can to 0. This effectively reports the can as 'empty'. Not applicable if Can fill indication method is 'Analog input'.

Test

Grab test 1000 Command for testing the sampler strobe. Issues one pulse (=one grab). Can only be used when sampling is inactive.

Sample settings

Display \rightarrow Sampling, Sample settings

The settings on this display can be used to define the frequency of the sample pulses.

Flow (fixed value)

Gives a sample pulse each time when a certain (fixed) volume has been metered.

Volume 500 Volume [m3] that needs to be accumulated before the between next grab command is issued. grabs fixed value

Flow (estimated volume)

Calculates the volume between grabs based on an expected total metered volume, such that the can will be full when this volume has been metered.

Expected500Estimated total volume [m3] to be metered in order to fill
the can.

Time (fixed value)

Gives a sample pulse each time when a certain (fixed) time has passed.

Time 500 Interval at which grab commands (pulses) are issued [s]. between grabs fixed value

Time (expected end time)

Calculates the time between pulses based on an expected end date and time, such that the can will be full at that moment.

Expected	500	Date / time when the sample can has to be full to the
end time for		target fill percentage.
sampling		

Time (period)

Calculates the time between pulses based on a period [hours], such that the can will be full when this period has passed.

Can fill	500	Period of time [hr] in which the can has to be filled to the
period		target fill percentage.

4 Configuration

This chapter describes the configuration items of the flow computer that are specific for the Gas Metric application.

Introduction

The configuration procedure for any Flow-X flow computer is described in manual IIA- Operation and Configuration.

The procedure basically consists of the following steps:

- Setting up the flow computer device
- Configuring the HART and communications devices
- Defining the configuration settings
- Defining the reports and printers
- Defining the communication lists.

All the steps are described in manual IIA.

Manual IIA describes how to use the user interface to access the configuration settings. The actual settings however are dependent on the actual application. This chapter describes all the settings that are part the Gas Metric application in a sequence that is logical from a configuration point of view.

I/O setup

A logical first step in the configuration process is to define the physical I/O points that involve all the transmitters, controllers and devices that are or will be physically wired to the I/O terminals of the flow computer.

Each flow module has the following amount of I/O.

- 6 analog inputs
- 2 PT100 inputs
- 4 analog outputs
- 16 digital I/O

The total number of pulse inputs, time period inputs, status inputs, pulse outputs, frequency outputs and status outputs is 16.

Later on in the configuration procedure the I/O points can be assigned to the related meter run, station and proving variables and statuses.

Analog inputs

Display \rightarrow IO, <Module <x>, Configuration, Analog inputs, Analog input <y>

with <x> the number of the module to which the input is physically connected and <y> the relative input number

Each flow module has 6 analog inputs. For each analog input the following settings are available:

Tag	600	Alphanumeric string representing the tag name of the transmitter, e.g. "PT-1001A". Only used for display and reporting purposes.
Input type	1000	Type of input signal 1= 4-20 mA 2= 0-20 mA 3= 1-5 Vdc 4= 0-5 Vdc
Averaging	1000	The method to average the individual samples within every calculation cycle. 15 samples per second are taken, so with a cycle time of 500 ms 7 to 8 samples are available per cycle. 1= Arithmetic mean 2= Root mean square Enter '2: Root Mean Square' for differential pressure flow transmitters. Enter '1: Arithmetic Mean' for other transmitters
Full scale	1000	The value in engineering units that corresponds with the full scale value. Uses the basic FC units: [°C] for temperature, [bara] or [barg] for pressure, [kg/m3] for density, [mbar] for differential pressure, [MJ/sm3] or [MJ/kg] for heating value, [m3/hr], [tonne/hr] or [GJ/hr] for flow rates. If a transmitter is used that uses different units, the range has to be converted into the basic FC unit. E.g. for a 4-20 mA temperature transmitter with a range of -30+80 [°C] the value 80 [°C] must be entered. For a temperature transmitter with a range of 0-300 [°F] the value 148.889 [°C] must be entered.

Zero scale	1000	The value in engineering units that corresponds with the zero scale value.
		Uses the basic FC units: [°C] for temperature, [bara] or [barg] for pressure, [kg/m3] for density, [mbar] for differential pressure, [MJ/sm3] or [MJ/kg] for heating value, [m3/hr], [tonne/hr] or [GJ/hr] for flow rates. If a transmitter is used that uses different units, the range has to be converted into the basic FC unit. E.g. for a 4-20 mA temperature transmitter with a range of -30+80 [°C] the value -30 [°C] must be entered. For a temperature transmitter with a range of 0-300 [°F] the value -16.778 [°C] must be entered.
High fail limit	1000	The value as percentage of the total span, at which a high fail alarm is given.
		Should be between 100 and 112.5 % span. For a 4-20 mA transmitter this corresponds to 20 to 22 mA.
Low fail limit	1000	The value as percentage of the total span, at which a low fail alarm is given.
		Should be between -25 and 0 % span. For a 4-20 mA transmitter this corresponds to 0 to 4 mA.

PT100 inputs

Display \rightarrow IO, <Module <x>, Configuration, PT100 inputs, PT100 input <y>

with <x> the number of the module to which the input is physically connected and <y> the relative input number

Each flow module has 2 PT100 inputs that can be connected to a PT100 element. For each PT100 input the following settings are available.

Tag	600	Alphanumeric string representing the tag name of the transmitter, e.g. "TT-1001A". Only used for display and reporting purposes.
Input type	1000	Type of PT100 element
		1: European (most commonly used) Alpha coefficient 0.00385 $\Omega / \Omega / ^{\circ}C$
		As per DIN 43760, BS1905,IEC751
		Range - 200+850 °C
		2: American
		Alpha coefficient 0.00392 $\Omega / \Omega / ^{\circ}C$
		Range - 100+457 °C
High fail	1000	The temperature in °C, at which a high fail alarm is
limit		given.
Low fail limit	1000	The temperature in °C, at which a low fail alarm is given.

Digital IO assign

Each flow module provides 16 multi-purpose digital channels that can be assigned to any type of input or output.

Display \rightarrow IO, <Module <x>, Configuration, Digital IO assign, Digital <y>

with <x> the number of the module to which the output is physically connected and <y> the output number

Tag	600	Alphanumeric string representing the tag name of the transmitter, e.g. "MOV-34010". Only used for display and reporting purposes.
Signal	1000	Assigns the digital signal to a specific purpose
type		0 : Not used
		1 : Digital input

e.g. status input	_		Channels 9 through 16:
2 : Digital output			1: + 3.6 Volts
e.g. status output, control output		1000	2: + 12 Volts
3 : Pulse input 1A	Input latch	1000	Only applicable if signal type is 'Digital input'
meter or master meter pulse input	mode		1: Actual
single pulse / channel A of dual pulse	_		2: Latched
4 : Pulse input 1B			If polarity = Normal & input latch mode = Actual then
meter or master meter pulse input			digital input is
channel B of dual pulse			0:OFF when signal is currently below threshold
5 : Time period input 1	-		1:ON when signal is currently above threshold
for densitometers and SG transducers			If polarity = Normal & input latch mode = Latched
6 : Time period input 2	_		then digital input is
7 : Time period input 3	_		0:OFF
8 : Time period input 4	_		when signal has not been above threshold
9 : Pulse output 1	_		1:ON
to drive an E/M counter or a sampler			when signal is or has been above thresholdn
10 : Pulse output 2	_		during the last calculation cycle
	_		If polarity = Inverted & input latch mode = Actual the
11 : Pulse output 3 12 : Pulse output 4	_		digital input is
· · · · · · · · · · · · · · · · · · ·	_		0:OFF
13: Prove detector			when signal is currently above threshold
master meter prove start / stop signal input	_		1:ON
17: Prover bus pulse output A			when signal is currently below threshold
meter pulse A output to prover FC 18: Prover bus pulse output B	_		If polarity = Inverted & input latch mode = Latched
meter pulse B output to prover FC			then digital input is
	_		0:OFF
23: Prover bus pulse input A remote meter / master meter pulse input A for master			when signal has not been below threshold
meter proving			1:ON
24: Prover bus pulse input B	_		when signal is or has been below threshold
remote meter / master meter pulse input B for master			during the last calculation cycle
meter proving	Output	1000	Only applicable if signal type is 'Digital output'
25 : Frequency output 1	– min.		Minimum period of time that the signal will remain
26 : Frequency output 2	 activation 		activated.
27 : Frequency output 3	time		After the minimum activation time has elapsed the
28 : Frequency output 4	_		output signal will remain activated until the control
29: Pulse input 2A	_		value becomes 0.
only applicable to version 2 hardware	Output	1000	Only applicable if signal type is 'Digital output'
30: Pulse input 2B	 delay time 		Period of time that the control signal must be high (>
only applicable to version 2 hardware			0) without interruption before the output will be
31: Pulse input 3A	_		activated.
only applicable to version 2 hardware			If the control signal becomes 0 before the time has
32: Pulse input 3B	_		elapsed, then the output signal will not be activated
only applicable to version 2 hardware			, ,
33: Pulse input 4A	_		
only applicable to version 2 hardware			The value 0 disables the delay function
34: Pulse input 4B	_		
only applicable to version 2 hardware			

Only digital channels 1-4 can be configured as time period inputs. For all other digital channels this option is not available.

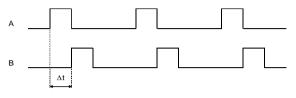
Digital IO settings

Display \rightarrow IO, <Module <x>, Configuration, Digital IO settings, Digital <y>

with <x> the number of the module to which the output is physically connected and <y> the output number

Polarity	1000	1: Normal
		2: Inverted
		Refer to setting 'Input latch mode' for more details.
Input	1000	Each digital channel has 2 threshold levels, which are
threshold level		as follows (all relative to signal ground):
level		Channels 1 through 8:
		1: + 1.25 Volts
		2: + 12 Volts

Pulse inputs


Display \rightarrow Configuration, <Module IO <x.>, Pulse input

with $\mbox{-}x\mbox{-}$ the number of the module to which the input is physically connected

Each version 1 flow module supports 1 single or dual pulse input meant for a flow meter that provides a single or a dual pulse output signal. A version 2 flow module supports up to 4 single or dual pulse inputs.

A dual pulse signal is a set of two pulse signals ('pulse trains') A and B that originate from the same flow meter. The two pulse trains are similar but shifted in phase (typically 90°). The primary purpose of the dual signal is to allow for **pulse integrity checking**. Added or missing pulses on either pulse train are detected and corrected for and simultaneous noise pulses are rejected. The function provides detailed information on the raw, corrected and bad pulses for both channels and for both the forward and reverse flow direction.

The phase shifted pulse train signal also allows for automatic detection of <u>flow direction</u>. Each A pulse is followed by a B pulse within a time period (Δ t) in case the flow runs in the forward direction. In case the flow runs in the reverse direction, the opposite is the case, i.e. each B pulse is followed by an A pulse within the same time period Δ t.

Channel B lags channel A

Figure 3: Flow direction from dual pulse signal

There is also the option to conditionally output the raw pulse 'prover bus' signal, which is useful in case a separate flow computer is used for proving purposes. The proving flow computer reads the 'prover bus' pulse output from the meter flow computer to perform prove measurements including double chronometry if required. The 'prover bus' output signal is generated at 10 MHz, the same frequency at which the raw pulse input signals are sampled.

The Flow/X series of flow computers provides Level A and Level B pulse security as defined in ISO 6551. Level A means that bad pulses are not only detected but also corrected for. Level B means that bad pulses are detected but not corrected for.

Like any digital input signal a pulse input has a threshold level (Volts) that determines whether the actual signal is considered as on or off.

The actual threshold level is defined on display 'Digital IO settings'.

The following settings are available for the pulse input of each flow module.

Pulse fidelity checking

Pulse fidelity level	1000	Pulse fidelity levels according to ISO6551
		0: None
		No pulse fidelity checking or correction
		1: Level A
		Pulse verification, alarming and correction
		2: Level B
		Pulse verification and alarming; no correction
		If pulse fidelity level A is enabled, then the corrected pulses are used for flow totalization. If pulse fidelity level B is enabled or if pulse fidelity checking is disabled, then the uncorrected pulses of channel A are used or, in case channel A does not provide any pulses, the uncorrected pulses of channel B are used.
Fall back to	1000	Only applicable to pulse fidelity level B.
secondary		0: Enabled
pulse		pulse B will be used when pulse A fails.

		1: Disabled
		pulse B is solely used for pulse verification.
Error pulses	1000	Only applicable to dual pulse inputs.
limit		If the total number of missing, added and
		simultaneous pulses for either channel becomes
		larger than this value, the FC will generate an 'error pulses limit alarm'.
		The value 0 disables the error pulses limit check.
Good pulses	1000	Only applicable to dual pulse inputs.
reset limit		If the number of good pulses since the last 'bad'
		pulse has reached this value, the bad pulse count
		and alarms will be reset automatically.
		The value 0 disables this reset function.
Error rate limit	1000	Only applicable to dual pulse inputs.
		If the difference in frequency between the two raw
		pulse trains is larger than this limit within the last
		calculation cycle, the FC will generate an 'Error pulse
		rate limit alarm'.
		The value 0 disables the error rate limit check.
Dual pulse fidelity threshold	1000	Dual pulse fidelity checking is only enabled when the actual pulse frequency is above this threshold limit [Hz]

Prover bus pulse outputs

Prover bus	1000	Enables prover bus output A. Meant for systems
pulse output A		using a common prover bus to a separate prover or master meter flow computer.
		The flow module will output the raw pulse input signal A directly
		to the prover bus pulse out A channel. (This channel is assigned to a specific digital on display 'Digital IO assign')
		In case of a multi-stream setup with a common prover or common master meter only the meter under prove should have its prover bus output enabled.
		Automatically set by prover logic.
Prover bus pulse output B	1000	Enables prover bus output B. Meant for systems using a common prover bus to a separate prover or master meter flow computer.
		The flow module will output the raw pulse input signal B directly
		to the prover bus pulse out B channel. (This channel is assigned to a specific digital on display 'Digital IO assign')
		In case of a multi-stream setup with a common
		prover or common master meter only the meter
		under prove should have its prover bus output enabled.
		Automatically set by prover logic.

Time period inputs

Display \rightarrow Configuration, <Module IO <x>, Time period inputs, Time period input <y>

with <x> the number of the module to which the input is physically connected and <y> the input number

Each flow module has 4 time period inputs, which can be used for densitometer and specific gravity transducer inputs.

For each time period input the following settings are available.

Difference	1000	Maximum allowable difference in microseconds.
limit		When the time period between two consecutive pulses
		differs more than this limit from the previous time
		period, the reading is considered to be abnormal.

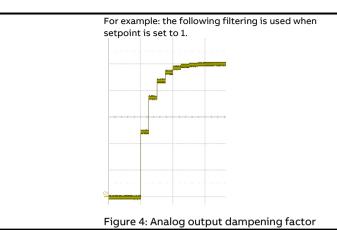
Following an abnormal reading there must be 3 consecutive readings within the limit before the time period value is considered normal again. When no 3 consecutive readings within the limit are available in the last 5 readings then the input signal is considered to be invalid

Resolution of the limit value is 100 nanoseconds

Like any digital input signal a time period input has a threshold level (Volts) that determines whether the actual signal is considered as on or off.

The actual threshold level is defined on display 'Digital IO settings'.

Analog outputs



Display \rightarrow IO, <Module <x>, Configuration, Analog outputs, Analog output <y>

with <x> the number of the module to which the output is physically connected and <y> the relative output number

Each flow module has 4 analog outputs. For each analog output the following settings are available.

Tag	600	Alphanumeric string representing the tag name of the output signal, e.g. "AO-045". Only used for display and reporting purposes.
Full scale	600	The value in engineering units that corresponds with the full scale (20mA) value.
		Uses the original FC units: [m3/hr] for volume flow rate, [kg/hr] for mass flow rate, [GJ/hr] for energy flow rate, [°C] for temperature, [bar] for pressure, [kg/m3] for density, [MJ/sm3] or [MJ/kg] for heating value. E.g. for a temperature with a range of -30+80 [°C] the value 80 must be entered. For a temperature with a range of 0-300 [°F] the value 148.889 [°C] must be
		entered.
Zero scale	600	The value in engineering units that corresponds with the zero scale (4mA) value.
		Uses the original FC units: [m3/hr] for volume flow rate, [kg/hr] for mass flow rate, [GJ/hr] for energy flow rate, [°C] for temperature, [bar] for pressure, [kg/m3] for density, [MJ/sm3] or [MJ/kg] for heating value.
		E.g. for a temperature with a range of -30+80 [°C] the value -30 must be entered. For a temperature with a range of 0-300 [°F] the value -16.778 [°C] must be entered.
Dampening factor	600	Dampening factor [08]. Can be used to obtain a smooth output signal. The value represents the number of calculation cycles * 8 that are required to get to the new setpoint.
		0: No filtering 1: It takes 8 cycles to get to the new setpoint 2: It takes 16 cycles to get to the new setpoint etc.

Pulse outputs

Pulse outputs can be used to feed low frequency pulses to an electro-mechanical (E/M) counter or to control a sampling system.

Pulse outputs are connected to a totalizer: A pulse is given each time that the totalizer has incremented by a certain value.

A reservoir is used to accumulate the pulses. Pulses are taken from the reservoir and fed to the output at a rate that will not exceed the specified maximum output rate

Display \rightarrow IO, Configuration, <Module <x>, Pulse outputs, Pulse output <y>

with <x> the number of the module to which the output is physically connected and <y> the output number

Each flow module has 4 pulse outputs. For each pulse output the following settings are available.

Max.	600	Maximum pulse frequency.
frequency		When output pulses are generated at a
		frequency higher than the maximum output
		rate, the superfluous pulses will be
		accumulated in the pulse reservoir.
		The maximum output rate is not a
		restriction of the Flow-X flow computer, but
		may be a restriction of the connected
		device. E.g. a electro-mechanical counter
		may be able to generate pulses up to 10 Hz.
Pulse	600	The flow computer uses a fixed pulse
duration		duration to output the pulses. The 'Pulse
		duration' is the time in milliseconds that an
		output pulse remains active (high).
		The actual pulse duration that will be used
		is the minimum of this setting and the time
		corresponding to 50% duty cycle at
		maximum frequency
		E.g. if the pulse duration setting = 0.25 sec
		and the maximum frequency = 5 Hz, then
		the actual pulse duration equals $0.5 * 1/5 =$

		0.1 sec.
Reservoir	600	Alarm limit for the number of pulses in the
limit		reservoir buffer. When the number of pulses
		in the reservoir exceeds the limit, then an
		alarm will be raised and no further pulses
		will be accumulated.

Frequency outputs

Frequency outputs can be used to feed high frequency pulses to an electro-mechanical (E/M) counter or to control a sampling system.

Frequency outputs are connected to a process variable: The actual value of the process variable is translated into a pulse frequency using linear interpolation. In principle any process value may be used (temperature, pressure, etc.), but flow rate and density are most common.

The use of frequency outputs is only supported by FPGA version 1422-21-2-2012 or later.

 \mathbb{X}

Display \rightarrow IO, <Module <x>, Configuration, Frequency outputs, Frequency output <y>

with <x> the number of the module to which the output is physically connected and <y> the output number

Each flow module has 4 frequency outputs. For each frequency output the following settings are available.

E de la cala	600	The second second second second to the state
Full scale	600	The value in engineering units that
value		corresponds to the highest frequency.
		Uses the original FC units: [m3/hr] for volume
		flow rate, [kg/hr] for mass flow rate, [GJ/hr]
		for energy flow rate.
		E.g. for a flow rate with a range of 0-2000
		[m3/hr] the value 2000 must be entered. For
		a flow rate with a range of 0-1000 [l/min] the
		value 60 [m3/hr] must be entered.
Zero scale	600	The value in engineering units that
value		corresponds with the lowest frequency.
		Uses the original FC units: [m3/hr] for volume
		flow rate, [kg/hr] for mass flow rate, [GJ/hr]
		for energy flow rate.
Full scale	600	Highest frequency
frequency		
Zero scale	600	Lowest frequency (>=0)
frequency		

Forcing I/O

For testing purposes all inputs and outputs can be forced to a defined value or state. This option is available at security level 1000 'engineer' or higher.

Display \rightarrow IO, Force IO

If an input is forced the flow computer will generate an alarm.

Overall setup

Flow computer concepts

The Flow-X supports 2 different flow computer concepts:

- 1 Independent flow computer
- 2 Station / prover flow computer with remote run flow computers

Independent flow computer

The flow computer does its job independent of other flow computers. It might be a single or multi-stream flow computer. If needed, station and / or proving functionality can be enabled, which is done by the flow computer itself. No other flow computer is needed for that. The flow computer runs one application, which takes care of everything.

Depending on the required functionality the flow computer has to be configured as one of the following FC types:

- 1: Run only
- 2: Station / run
- 3: Proving / run
- 4: Station / proving /run

Station / prover flow computer with remote run flow computers

In this concept a number of flow computers are working together. Usually several single-stream flow computers are involved. Station and / or proving functionality is done by a separate flow computer, which is communicating to the (remote) run flow computers to exchange the data that's needed to fulfill its station / proving tasks. A prove is initiated on the station / prover flow computer. The station / proving flow computer and run flow computers are each running a separate application.

The run flow computers have to be configured as FC type:

1: Run only

Depending on the required functionality the station / proving flow computer can be configured as one of the following FC types:

- 6: Station only
- 7: Proving only
- 8: Station / proving

In order to be able to communicate to the 'remote run' flow computer(s), the station / proving flow computer must have a '**Connect to remote run**' Modbus driver configured for every individual remote run flow computer (in Flow-Xpress 'Ports and Devices').

On the remote run flow computer(s) the '**Connect to remote station**' Modbus driver has to be enabled (in Flow-Xpress 'Ports and Devices'). It's also possible to enable run functionality on the station / proving flow computer, f.e. in case of master meter proving, where the proving flow computer can also control the master meter. In that case the station / proving flow computer has to be configured as one of the following FC types:

2: Station / run3: Proving / run4: Station / proving / run

The maximum number of runs in a station (local plus remote runs) is 8.

In case of a station that consists of a **local** run (controlled by the station flow computer itself) and a number of **remote** runs (remote run flow computers running their own application), the local run is numbered 1 and the remote runs can be configured as runs 2 - 8.

runs can be configured as 3, 4 and 5.

Common settings

 \mathcal{K}

Display → Configuration, Overall setup, Common settings

Flow computer type	1000	Determines whether the flow computer contains meter run functionality and / or station functionality and / or proving functionality.
		1: Run only Only meter run functionality is activated on this flow computer. Station functionality and proving logic are de-activated. The flow computer is either a single run FC or a multiple run FC. In case of a single run FC the run may be part of a remote station.
		2: Station / run Both meter run and station functionality are activated on this flow computer. Proving logic is de- activated. The flow computer is a station FC with one or more local runs and may optionally be communicating to one or more remote runs FC's. All local and remote runs are part of the station.
		3: Proving / run Both meter run functionality and proving logic are activated on this flow computer. Station functionality is de-activated. The flow computer is a prover FC with one or more local runs and may optionally be communicating to one or more remote runs FC's. All local and remote runs are independent and are not part of a station, but they can all be proved by this FC.
		4: Station / proving / run Meter run and station functionality and proving logic are all activated on this flow computer. The flow computer is a station / prover FC with one or more local runs and may optionally be communicating to one or more remote runs FC's. All local and remote runs are part of the station and can be proved by this FC.
		 6: Station only Only station functionality is activated on this flow computer. Run functionality and proving logic are de-activated. The flow computer is a station FC without local runs and is communicating to one or more remote run FC's. All remote runs are part of

		the station.	method		Maintain separate station totals based on the sum of	
			methou		run increments.	
		7: Proving only				
		Only proving logic is activated on this flow			2: Sum of run totals	
		computer. Run and station functionality are de-			Calculate station totals as the sum of run totals.	
		activated. The flow computer is a prover FC without				
		local runs and is communicating to one or more	Alarm setting	gs		
		remote run FC's which can be proved by it.	Disable alarms		Controls if the limit alarms, calculation alarms and	
		8: Station / proving	if meter is	1000	deviation alarms are suppressed when the meter is	
		Station functionality and proving logic are activated	inactive		inactive (flow rate, dP or pulse frequency below the	
		on this flow computer. Run functionality is disabled.	mactive		low flow cutoff).	
		The flow computer is a station / prover FC without			0: No	
		local runs and is communicating to one or more				
		remote runs FC's. All remote runs are part of the	D: 11 1	1000	1: Yes	
		station and can be proved by this FC.	Disable alarms	1000	Controls if the limit alarms, calculation alarms and	
	000	Defines whether one common product (density and	in 		deviation alarms are suppressed when the meter is set	
product		gas composition) is used for all meter runs or each	maintenance		in maintenance mode.	
		meter run uses its own product setup.	mode		0: No	
		0: Disabled			1: Yes	
		Each meter run runs a separate product, i.e. has a	Calculation out	1000	Controls if a calculation out of range alarm is	
		separate density and gas composition	of range		generated when an input (e.g. temperature, pressure	
		1: Enabled	alarms		or gas composition) is out of range of the applicable	
		A common product is used for all meter runs.			standard to calculate the compressibility, molar mass	
		In case of a station FC with one or more remote run			or heating value.	
		flow computers, Station product has to be enabled			0: Disabled 1: Enabled	
		both on the station FC and on the remote run flow				
		computer(s).	Deviation	1000	Delay time [s] on deviation alarms:	
		In case of a proving flow computer without station	alarm delay		Pressure deviation alarms (deviation between both	
		functionality (FC type: proving/run or proving only),			pressure transmitter readings in case of dual	
		Station product has to be disabled both on the prove			transmitters)	
		FC and on the remote run flow computer(s).			Temperature deviation alarms (deviation between	
Calculation	ı settir	igs			both temperature transmitter readings in case of dual	
	1000	Controls whether the net heating value is used for			transmitters)	
for energy	1000	energy totals instead of the gross heating value.			Density deviation alarms (deviation between two	
		0: No GHV (higher heating value) is used			densitometers, deviation between two SG	
		1: Yes NHV (lower heating value) is used			transducers, deviation between observed density and	
Averaging	1000	Determines the method used for calculating the period			AGA-8 calculated density)	
method	1000	averages.			Flow deviation alarms (deviation between pulse flow	
		0: Time weighted			rate and smart meter flow rate)	
		1: Flow weighted on gross volume			VOS deviation alarms (deviation between meter VOS	
		2: Flow weighted on mass			and FC calculated VOS)	
		3: Flow weighted on base volume			dP deviation alarms (deviation between two dP	
		In either case averaging is inactive if the meter is			transmitter values if two transmitters of the same	
		inactive (flow rate, dP or pulse frequency below the low			range are used)	
		flow cutoff).				
		now cuton).	Metrological			
			MID compliance		Determines if compliance with the measuring	
Totalizer se	ettings	i		2000	instruments directive (MID, the european metrology	
Disable totals	1000	Controls if the totals are disabled when the meter is			law) is required or not. Enables the accountable /	
if meter is		inactive (flow rate, dP or pulse frequency below the			non-accountable totalizers and alarms.	
inactive		low flow cutoff).			0: Disabled	
		0: No			1: Enabled	
		1: Yes				
Set flowrate	1000	Controls if the flow rates are set to 0 if the meter is			If enabled, the accountable totalizers are active only	
to 0 if meter	1000	inactive (flow rate, dP or pulse frequency below the			if there's no accountable alarm, while the non- accountable totalizers are active if there is an	
is inactive	low flow cutoff).					
	0: No			accountable alarm. If disabled, both the		
		0: No 1: Yes			accountable and non-accountable totalizers are	
Depart we start	1000				inactive.	
Reset maint.	1000	This setting controls whether the maintenance			Refer to chapter 'MID Compliance' for more	
A - A - I		totalizers start at 0 when entering maintenance mode			information.	
	5	or at the values from the last time that maintenance			If enabled then metrological data is shown on	
totals on entering						
entering		mode has been active.			display 'Metrological'.	
		mode has been active. 0: No	Energy	1000	Defines whether or not an accountable alarm is	
entering maint. mode		mode has been active. 0: No 1: Yes	accountable	1000	Defines whether or not an accountable alarm is generated (accountable totals disabled, non-	
entering	5 1000	mode has been active. 0: No		1000	Defines whether or not an accountable alarm is	

0: Disabled 1: Enabled

totalizers and averages.

the flow direction.

1: Station totals:

Station totals 1000

calculation

If enabled, the flow computer maintains forward AND

reverse totalizers and averages. If disabled, the flow

Defines the method for calculating the station totals.

computer only maintains one set of (forward)

Based on the flow direction input the forward or reverse totalizers are active. See paragraph 'Flow direction input' for an explanation how to configure

Energy accountable alarm	1000	Defines whether or not an accountable alarm is generated (accountable totals disabled, non- accountable totals enabled) in case of an energy / heating value alarm. 0: Disabled
		1: Enabled
Allow manual overrides	1000	Determines whether manual (operator) transmitter overrides are accepted or not.
		0: No
		1: Yes

Date and time

Date	1000	Date format used on the flow computer screens and
format		reports

		1: dd/mm/yy
		2: mm/dd/yy
Time set	1000	Number of seconds around the hour shift that any time
inhibit		shift request is inhibited. This is to avoid problems with
time		the closing of period totals and the generation of reports
		on the hour / day shift. Typically 30 sec.

Historical data archives

Generate	1000	Defines if hourly archive data is generated and stored
hourly		after each hour end.
archive data		0: No
		1: yes
		Please be aware that the actual historical data archive
		content has to be configured in Flow-Xpress prior to
		writing the application to the flow computer.
Generate	1000	Defines if daily archive data is generated and stored
daily archive		after each day end.
data		0: No
		1: yes
		Please be aware that the actual historical data archive
		content has to be configured in Flow-Xpress prior to
		writing the application to the flow computer.
Generate	1000	Defines if period A archive data is generated and stored
period A		after each period A end.
archive data		0: No
		1: yes
		Please be aware that the actual historical data archive
		content has to be configured in Flow-Xpress prior to
		writing the application to the flow computer.
Generate	1000	Defines if period B archive data is generated and stored
period B		after each period B end.
archive data		0: No
		1: yes
		Please be aware that the actual historical data archive
		content has to be configured in Flow-Xpress prior to
		writing the application to the flow computer.
Generate	1000	Defines if prove archive data is generated and stored
prove archive data		when a prove is finished.
		<u>0: No</u>
		1: yes
		Please be aware that the actual historical data archive
		content has to be configured in Flow-Xpress prior to
		writing the application to the flow computer.

FC redundancy

FC duty status DO	1000	Defines if the flow computer duty status is sent to a digital output.
		0: Disabled
		1: Enabled
		Only applicable if flow computer redundancy is
		enabled. Please be aware that redundancy has to
		be enabled / configured in Flow-Xpress prior to
		writing the application to the flow computer.
FC duty status	1000	Number of the flow module to which the output
DO module		signal is physically connected.
FC duty status	1000	Number of the digital channel on the selected
DO channel		module to which the output signal is physically
		connected.

Constants

Display \rightarrow Configuration, Overall setup, Constants

Atmospheric pressure	1000	The local atmospheric pressure [bar(a)] is used to convert gauge pressure to absolute pressure and vice versa.
Molar mass of air	1000	The molar mass of air [kg/kmol] is used to calculate the specific gravity.
		If the specific gravity is a live input (via a SG transducer or as a process input) then this parameter is used to calculate the observed and

		base density and corresponding volumes.
		28.9626 [kg/mol] according to ISO-6976 : 1995
Base density of	1000	The base density of air [kg/m3] is used to calculate
air		the relative density.
		Typical values are 1.292923 [kg/sm3] at 0 [°C],
		1.224510 [kg/sm3] at 15 [°C] and 1.204449
		[kg/sm3] at 20 [°C] (from ISO-6976 : 1995)
Reference	1000	The reference pressure [bar(a)] for the base
pressure		density and base volume
Reference	1000	The reference temperature [°C] for the base
temperature		density and base volume
Universal gas	1000	Universal gas constant R [J/K/mol].
constant		8.314510 [J/K/mol] according to IS6976:1995
		Refer to section calculations to check when and
		how this parameter is used.
Local	1000	Gravity constant g [m/s2].
acceleration due		Used for wet gas correction.
to gravity		Default value 9.81.

Period settings

The application provides custody transfer data (totals and averages) for 4 different periods, the hourly period, the daily period and 2 freely definable periods A and B.

The start of the daily period is configurable. Periods A and B can be used for any period type and any period start, e.g. a 2 weekly period starting at Tuesday 06:00 or a 2nd fiscal daily period starting at 08:00. The flow computer maintains similar totals and averages for the hourly, daily, period A and period B periods.

Display \rightarrow Configuration, Overall setup, Periods

Daily period

Day start 600 Start of the daily period as offset in hours from hour midnight. E.g. for a day start at 6:00 AM this parameter should be set to 6.

Periods A / B

Period <x></x>	600	Text to be shown on period displays and reports
label		E.g. "Two weekly" or "Monthly"
Period <x></x>	600	Type of period
type		2: Minute
		3: Hour
		4: Day
		5: week
		6: Month
		7: Quarter
		8: Year
Period <x></x>	600	Period duration, i.e. number of period types.
duration		E.g. for a 2 weekly period, enter 2 (and set the period
		type at 5: week).
Period <x></x>	600	Period offset from start of year ('January 1.')
offset days		expressed in number of days, e.g. 10 means 'January
		11.'
Period <x></x>	600	Period offset from midnight in number of hours. e.g.
offset hours		6 means 6:AM
Period <x></x>	600	Period offset from the whole hour in number of
offset		minutes, e.g. 30 means 30 minutes after the hour
minutes		
Period <x></x>	600	Period offset from the whole hour in number of
offset		seconds
seconds		

Period end commands

Manual commands to end the periods for testing and special applications. The commands close the applicable period totals

and averages and generate the period reports and archives (if applicable).

End hourly period	1000	Manual command to close the hourly period
End daily period	1000	Manual command to close the daily period
End period A	1000	Manual command to close the period A period
End period B	1000	Manual command to close the period B period

Totalizer settings

Display \rightarrow Configuration, Overall setup, Totals

Decimal resolution

Gross volume total decimal places	1000	Decimal resolution at which the indicated and gross volume totals are maintained.
Base volume total	1000	Decimal resolution at which the base volume
decimal places		totals are maintained.
Mass total decimal places	1000	Decimal resolution at which the mass totals are maintained.
Energy total decimal places	1000	Decimal resolution at which the energy totals are maintained.

Rollover values

Gross volume total rollover val	1000	The rollover value for the indicated volume and gross volume totalizers.
Base volume total rollover val	1000	The rollover value for the base (standard) volume totalizers.
Mass total rollover val	1000	The rollover value for the mass totalizers.
Energy total rollover val	1000	The rollover value for the energy totalizers.

Display levels

When no user has logged in to the flow computer, only abbreviated versions of the following displays are shown:

- In-use values
- Flow rates
- Cumulative totals
- Gas composition

All other displays have a minimum security level that needs to be activated (by a log-in) before the displays are shown and therefore accessible.

The following settings define the minimum security level required to access the associated displays. A display is hidden when the active security level is below the setting.

For each type of displays a selection can be made from the following list:

Always show

Always shows the display(s), even if not logged in

Operator (500)

Only show the display(s) if logged in at security level 'operator' or higher

Technician (750)

Only show the display(s) if logged in at security level 'technician' or higher

Engineer (1000)

Only show the display(s) if logged in at security level 'engineer' or higher

Administrator (2000)

Only show the display(s) if logged in at security level 'administrator'

The display levels only define the security levels needed for **viewing** specific types of displays. They don't define the security levels needed for **modifying** the parameters that are shown on the displays. Each parameter has its own minimum security level, which is needed to modify it, as is indicated in this manual.

Display \rightarrow Configuration, Overall setup, Display levels

Detailed data display level	2000	Minimum security level for all displays that contain detailed information: In-use values Flow rates Cumulative totals Flow meter details Temperature details Pressure details Density details Gas properties details Period data Historical data Event log Metrological details (if applicable) IO diagnostics Communication diagnostics
Gas properties display level	2000	Minimum security level for the gas properties displays
Sampler control display level	2000	Minimum security level for sampler control displays
Proving display level	2000	Minimum security level for the proving displays
Valve control display level	2000	Minimum security level for displays for controlling the motor-operated valves
Flow control display	2000	Minimum security level for flow control displays
Reports display level	2000	Minimum security level for viewing and printing reports
Alarm overview display level	2000	Minimum security level for accessing the alarm overview display
IO calibration display level	2000	Minimum security level for accessing the displays to calibrate the analog IO
Metrological configuration display level	2000	Minimum security level for accessing the metrological configuration displays (like run set, flow meter, pressure, temperature, pressure and density configuration displays)
Non-metrological configuration display level	2000	Minimum security level for accessing the non- metrological configuration displays (like valve control, flow control, analog outputs, pulse outputs)

System data

Display \rightarrow Configuration, Overall setup, System data

Flow computer tag	600	Tag name of the flow computer, e.g. "FY-1001A"
System tag	600	Tag name for the meter station or in case of a single stream flow computer, the meter run, e.g. "YY-100"
System description	600	Description of the meter station or in case of a single stream flow computer, the meter run, e.g. "Export stream 2"
System company	600	Name of the company that owns the meter station or in case of a single stream flow computer, the meter run, e.g. "LiqTransco"
System location	600	Name of the location of the meter station or in case of a single stream flow computer, the meter run, e.g. "Green field, South section"

Meter run setup

The meter run configuration displays are only available for the following FC types:

- Run only
- station /run
- proving / run
- station / proving / run

Run setup

This display contains the general run settings. Depending on the selections made in this display, specific configuration displays for detailed configuration will be available further down the menu.

Display \rightarrow Configuration, Run <x>, Run setup

with <x> the module number of the meter run

The settings in this paragraph that are marked with (*) are only available if 'station product' (Configuration, Overall setup, Common settings) is disabled.

Meter	type
Meter	100

Meter 1000	The following meter device types are supported:
device type	1:Pulse
	Any flow meter that provides a single or dual pulse
	signal representing the volumetric or mass flow.
	Typically used for turbine and PD (Positive
	displacement) flow meters.
	2: Smart
	Any flow meter that provides its flow rate and / or
	total value through an analog or HART signal or via a
	Modbus communications link.
	Typically used for ultrasonic and coriolis flow meters.
	For a HART signal or a Modbus communications link
	the corresponding communications device needs to
	be defined using the Flow-Xpress software, prior to
	writing the application to the flow computer.
	3: Smart / pulse
	Any flow meter that provides its flow rate and / or
	total value through an analog or HART signal or via a
	Modbus communications link and also through a
	single or dual pulse signal. Either the smart or the
	pulse signal may be defined as the primary signal for
	totalization. Also a deviation check between the two
	signals is performed.
	Typically used for ultrasonic and coriolis flow meters
	that provide both a communications link and a pulse
	signal.
	For a HART signal or a Modbus communications link
	the corresponding communications device needs to
	be defined using the Flow-Xpress software, prior to
	writing the application to the flow computer.
	4: Orifice
	Orifice plate with up to 3 differential pressure
	transmitters.
	5: Venturi
	Classical venturi with up to 3 differential pressure
	transmitters.
	6: V-cone
	McCrometer V-Cone flow meter with up to 3
	differential pressure transmitters. 7: Venturi nozzle

Venturi nozzle with up to 3 differential pressure transmitters.
8: Long radius nozzle
Long radius nozzle with up to 3 differential pressure
transmitters.
9: ISA1932 nozzle
ISA1932 nozzle with up to 3 differential pressure
transmitters.

Meter temperature

Meter	1000	Defines if one or two transmitters are used for
temperature		indicating the meter temperature.
transmitter(s)		0: Single
		One meter temperature transmitter
		1: Dual
		Two meter temperature transmitters

Meter pressure

Meter pressure transmitter(s)	1000	Defines if one or two transmitters are used for indicating the meter pressure.
		0: Single
		One meter pressure transmitter
		1: Dual
		Two meter pressure transmitters

Density

The settings are replicated from the 'Density setup' display. See the paragraph 'Density setup' for a description of the individual settings.

Observed density input type (*) Density temperature input type (*) ensity pressure input type (*) ase density input type (*) pecific gravity input type (*) elative density input type (*) leter density calculation method

> If an impossible combination of settings is chosen, then a 'Density configuration error' alarm is shown.

as composition

as composition input type (*)

his setting is replicated from the 'Gas composition'

onfiguration display. See the paragraph 'Gas composition' for a etailed description.

eating value

Gross heating value	1000	See paragraph 'Heating value input'
input type (*)		

un control setup

rom this display the run control functions, like valve control, ow control and sampler control can be enabled or disabled. epending on the selections made in this display, specific onfiguration displays for detailed configuration will be available urther down the menu.

Display \rightarrow Configuration, Run <x>, Run control setup

with <x> the module number of the meter run

Valve contr	ol	
Inlet valve control signals	600	With this setting control of the inlet valve can be enabled or disabled (none=disabled). For a thorough explanation of this setting refer to paragraph 'Valve control'.
Outlet valve control signals	600	With this setting control of the outlet valve can be enabled or disabled (none=disabled). For a thorough explanation of this setting refer to paragraph 'Valve control'.
Run to prover valve control signals	600	With this setting control of the run to prover valve can be enabled or disabled (none=disabled). For a thorough explanation of this setting refer to paragraph 'Valve control'.

Flow / pressure control

Flow /	600	With this setting flow / pressure control (PID control)
pressure		can be enabled or disabled (none=disabled). For a
control		thorough explanation of this setting refer to
mode		paragraph 'Flow / pressure control'.

Flow meter setup

) The type of flow meter is set up under Configuration, Run <x>, Run Setup. Depending on the selected meter

type, specific display screens for configuration of the meter are available.

Display → Configuration, Run <x>, Flow meter, Meter data

with <x> the module number of the meter run

Meter tag	600	Flow meter tag, e.g. 'FT-1023AA'
Meter ID	600	Flow meter ID, e.g. 'Check meter gas export 2'
Meter serial number	600	Flow meter serial number, e.g. 'H1009245'
Meter manufacturer	600	Name of the flow meter manufacturer
Meter model	600	Flow meter model, e.g. 'Promass 83'
Meter size	600	Flow meter size, e.g. '120 mm' or ' 11" '

Pulse input

This display is only available if Meter device type is 'Pulse' or 'Smart / Pulse'.

Display \rightarrow Configuration, Run <x>, Flow meter, Pulse input

with <x> the module number of the meter run

Pulse input 1000 quantity type Either 'Volumetric' for a volumetric flow meter (e.g. turbine, PD, ultrasonic) or 'Mass' for a mass flow meter (e.g. coriolis) 1: Volume

		2: Mass
Meter activ	ve settin	gs
Meter active threshold frequency	1000	Low flow cutoff frequency. When the actual frequency [Hz] is below this threshold value, the meter is considered to be inactive. Depending on the settings 'Disable totals when meter inactive' and 'Set flow rate to 0 when meter inactive' the totals are stopped and / or the flow rate is set to zero (refer to paragraph 'Overall setup').
Enable meter inactive custom condition	1000	If enabled, the 'meter inactive custom condition' of the meter run can be used to disable / enable the meter totals and / or set the flow rate to 0 through an internal 'calculation' or through communication. Should only be enabled if needed 0: Disabled
		1: Enabled
HF / LF pul		
HF / LF	lses 1000	Enables or disables high frequency / low frequency
HF / LF		Enables or disables high frequency / low frequency pulses.
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low
HF / LF		Enables or disables high frequency / low frequency pulses. O: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low frequency pulse is for indication only. The relation
HF / LF		Enables or disables high frequency / low frequency pulses. O: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low frequency pulse is for indication only. The relation between the high frequency pulses and low
HF / LF		Enables or disables high frequency / low frequency pulses. O: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low frequency pulse is for indication only. The relation between the high frequency pulses and low frequency pulses is defined by the blade ratio .
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low frequency pulse is for indication only. The relation between the high frequency pulses and low frequency pulses is defined by the blade ratio . 2: Auto-adjust meter
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low frequency pulse is for indication only. The relatio between the high frequency pulses and low frequency pulses is defined by the blade ratio . 2: Auto-adjust meter Pulse A is the high frequency pulse of the main
HF / LF		Enables or disables high frequency / low frequency pulses. 0: Disabled Pulse A and B are both high frequency pulses. 1: Blade ratio Pulse A is a high frequency pulse. Pulse B is a low frequency pulse. The high frequency pulse (pulse A) is used for the flow calculations. The low frequency pulse is for indication only. The relation between the high frequency pulses and low frequency pulses is defined by the blade ratio . 2: Auto-adjust meter

Auto-adjust meter pulses

pulses blade

ratio

The settings in this section are only applicable if **HF / LF pulse type** has been set to 'Auto-adjust meter'.

and low frequency pulses

LF pulse for every 4 HF pulses.

E.g. a blade ratio of 4 means that there will be one

A Sensus 'Auto-adjust turbo meter' contains two rotors: a high frequency main rotor and a low frequency sense rotor that's running in the opposite direction. The aim of this design is to correct for inaccuracies due to drag, mechanical wear, nonuniform flow, swirl, pulsation and contamination.

The volume from this meter is calculated as:

Meter volume = main rotor volume – sense rotor volume Main rotor volume = main rotor pulses / main rotor K-factor Sense rotor volume = sense rotor pulses / sense rotor K-factor

The k-factors are chosen such that the sense rotor measures a certain share of the flow (defined by the 'Factory calibration adjustment [%]', f.e. 8%) and the main rotor measures 100% plus this amount (f.e. 108%).

For both rotors a separate cut-off frequency is applied. If the measured frequency is below the cut-off frequency, the rotor signal is considered to be inactive and is not taken into account in the calculations. If the main rotor signal is inactive (i.e. below the cut-off frequency) then the meter is set to inactive. If the sense rotor signal is inactive while the main rotor is active, then the meter is set to active and the volume is calculated by the alternative formula:

Meter volume = main rotor pulses / mechanical k-factor.

Main rotor k- factor	1000	K-factor used to calculate the main rotor volume [pls/m3]
Sense rotor k- factor	1000	K-factor used to calculate the sense rotor volume [pls/m3]
Mechanical k- factor	1000	K-factor used to calculate the meter volume in case the sense rotor is inactive while the main rotor is active [pls/m3]
Main rotor cutoff frequency	1000	Cutoff frequency for the main rotor [Hz]
Sense rotor cutoff frequency	1000	Cutoff frequency for the sense rotor [Hz]
Factory calibration adjustment	1000	Percentage that defines the share of flow that is measured by the sense rotor [%]

Custom pulse increment

Custom pulse	1000	If enabled, the totalizer increments are calculated
increment		from the value that is written to the 'Custom pulse
		increment' and the actual pulse input is not used.
		0: Disabled
		1: Enabled

Smart meter

This display is only available if Meter device type is 'Smart' or 'Smart / Pulse'.

 \mathbb{X}

Display \rightarrow Configuration, Run <x>, Flow meter, Smart meter

with <x> the module number of the meter run

Smart meter	1000	Type of input used for the 'smart' flow meter
input type		1: HART / Modbus (Serial, Ethernet or HART)
		2: Analog input
Use flowrate or total	1000	Only applicable if smart meter input type = 'HART / Modbus'.
		Determines whether the flow rate or the flow total
		value as provided by the flow meter is used for
		flow totalization.
		1: Flow rate
		2: Flow total
		In case of an analog input the input always
		represents a flow rate.
Pulse is	1000	Only applicable if meter type is 'Smart / pulse'.
primary		Controls whether the pulse input or the smart
		input is used as the primary source for flow
		totalization.
		0: No
		Smart input is primary
		1: Yes
		Pulse input is primary
Fall back to	1000	Only applicable if meter type is 'Smart / pulse'.
secondary		Defines what happens if the primary input fails.
flow signal		0: Disabled
		Don't use the secondary flow signal if the
		primary signal fails. The secondary signal is
		solely used for the deviation check.

1: Enabled	
Use the secondary flow signal if the primary	
signal fails while the secondary signal is healty.	

Analog input settings				
Analog input quantity type	1000	Only applicable if smart meter input type = '2: Analog input' or input type is '1: HART / Modbus' with option 'HART to analog fallback' enabled 1: Volumetric 2: Mass For HART or Modbus inputs this setting is determined automatically from the communication tag list of the assigned communication device.		
Analog input module	1000	Only applicable if smart meter input type = '2: Analog input' or input type is '1: HART / Modbus' with option 'HART to analog fallback' enabled Number of the flow module to which the analog signal is physically connected. -1: Local module means the module of the meter run tiself		
Analog input channel	1000	Only applicable if smart meter input type = '2: Analog input' or input type is '1: HART / Modbus' with option 'HART to analog fallback' enabled Number of the analog input channel on the selected module to which the analog signal is physically connected.		

HART / Modbus settings

Smart meter internal	1000	Only applicable if smart meter input type = 'HART / Modbus'.
device nr.		Device nr. of the communication device as assigned in the configuration software (Flow- Xpress, section 'Ports & Devices')
HART to analog fallback	1000	Only applicable for a single HART transmitter in a loop, where the 4-20 mA signal is provided together with the HART signal.
		0: Disabled The 4-20 mA signal will not be used if the HART signal fails. Instead the value corresponding with the 'Fallback type' will be used.
_		1: Enabled The 4-20 mA signal will be used if the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used.

Meter active settings

Meter active threshold flow rate	1000	Low flow cutoff flow rate. The meter will be considered inactive when the flow rate is below this limit value. The value has the same units as the flow rate that is indicated by flow meter: [m3/hr] in case of a volume flow meter, [kg/hr] in case of a mass flow meter.
		Depending on the settings 'Disable totals when meter inactive' and 'Set flow rate to 0 when meter inactive' the totals are stopped and / or the flow rate is set to zero if the flow rate is below this threshold (refer to paragraph 'Overall setup').
Enable meter inactive custom condition	1000	If enabled, the 'meter inactive custom condition' of the meter run can be used to disable / enable the meter totals and / or set the flow rate to 0 through an internal 'calculation' or through communication. Should only be enabled if needed. 0: Disabled
		1: Enabled

Communication settings

Pulse K-factor selection	1000	Defines if the K factor (pulses/unit) is read from the meter or set manually. Only applicable if meter type is 'Smart / pulse'.
		1: User parameter Use the K-factor that is configured in the flow computer

		2: Read from flow meter Use the K-factor that is read from the smart meter
		Note that communication of the K-factor via
		Modbus is not supported by all smart meters.
Flow meter total rollover	1000	Only applicable for a smart meter of which the 'Flow total' is used for flow accumulation.
		Defines the value at which the total as received from the flow meter rolls-over to 0. When the current total value indicated by the flow meter is smaller than the previous value total, then the Flow-X calculates the increment assuming that a roll-over occurred. It then checks that the increment does not exceed the 'Flow Meter Max. Change In Total'. Unit is [m3] in case of a volume flow meter, [kg] in case of a mass flow meter.
Flow meter max. change	1000	Only applicable for a smart meter of which the 'Flow total' is used for flow accumulation.
in total		Total increments beyond this limit will be ignored.
		This may f.e. happen in case the totalizer in the
		meter is reset or when the meter is replaced.
		Unit is [m3] in case of a volume flow meter, [kg] in case of a mass flow meter.
		case of a mass now meter.

Flow rate deviation check

Flow deviation 600	Only applicable if meter type is 'Smart / pulse'.
limit smart /	The flow rates as indicated by the smart and pulse
pulses	inputs are compared and a 'Smart / pulse flow
	deviation' alarm is raised if the relative deviation
	between the two is larger than this Flow deviation
	limit [%].

Velocity of sound deviation check

AGA10 velocity of sound check	600	Only applies to ultrasonic flow meters. Enables or disables a check between the velocity of sound (VOS) from the meter and the velocity of sound calculated by the flow computer based on AGA10. 0: Disabled 1: Enabled
Velocity of sound deviation limit	600	Deviation limit [m/s] for the velocity of sound check. If the velocity of sound check is enabled and the deviation between the VOS from the meter and the VOS calculated by the flow computer exceeds this limit, then an alarm is generated.

Meter K-factor

Only available if Meter device type is 'Pulse input' or 'Smart / pulse'.

To convert meter pulses in metered volume a meter K-factor is used. The meter K-factor value can be defined in two ways, either as a nominal meter K-factor value that is applied for all flow rates or as a calibration curve, where a number of calibrated K-factors is defined as a function of the actual pulse frequency.

Display \rightarrow Configuration, Run <x>, Flow meter, Meter K-factor(, K-factor setup)

With <x> the module number of the meter run

Nominal K-factor

Nominal K- factor (fwd/rev)	1000	The number of pulses per unit, with the unit being m3 for volumetric flow meters, or kg for mass flow meters. Separate nominal K-factors are maintained for forward and reverse flow directions.
		Nominal K-factors are only used if K-factor curve

interpolation is disabled. The reverse nominal K-factor is only used if reverse totalizers are enabled.

K-factor curve	1000	Controls whether the nominal K-factor or the
		calibration curve is used.
		0: Disabled
		Nominal K-factor is used
		1: Enabled
		Calibration curve is used.
Curve	1000	Controls if extrapolation is allowed when the pulse
extrapolation allowed		frequency is outside the calibration curve
		0: No
		When the pulse frequency is below the first
		calibration point or above the last calibration
		point, then respectively the first or the last
		calibration K-factor will remain in-use.
		1: Yes
		The interpolation is extrapolated when the pulse
		frequency is outside the calibrated range.

K-factor curve (forward / reverse)

Display \rightarrow Configuration, Run <x>, Flow meter, Meter K-factor, K-factor curve (forward / reverse)

With <x> the module number of the meter run

K-factor curves are only visible if K-factor curve interpolation is enabled. The reverse K-factor curve is only visible if reverse totalizers are enabled.

Point x – Frequency	1000	Pulse frequency [Hz] of the calibration point
Point x – K- factor	1000	Meter K-factor [pls/unit] of the calibration point.

Remarks:

- Pulse frequency must be in ascending order
- Up to 12 points can be defined. For unused points, leave the pulse frequency to 0. E.g. if the curve has 6 points, the pulse frequency of points 7 through 12 must be set to 0.

Meter factor / error

To correct for a meter error that was determined at a meter calibration, the volume or mass as indicated by the meter can be corrected with either one nominal meter factor for all flow rates, or a calibration curve that defines the meter factor as a function of the flow rate.

Because meter calibration reports specify either the **meter factor** or the **meter error** as a function of the flow rate, the flow computer accommodates the entry of either value. The relationship between the meter error and the meter factor as follows:

> Meter factor = 100 / (100 + Meter error) (with the meter error specified as a percentage).

By default a nominal meter factor of 1 is used, so effectively disabling the correction.

Separate nominal meter factors / errors and separate meter factor / error curves are used for forward and reverse flow.

Display \rightarrow Configuration, Run <x>, Flow meter, Meter factor(, Meter factor setup)

With <x> the module number of the meter run

Type of 1000 input value	Defines the meaning of the entered values. Applies for both the nominal value and the calibration curve values.	
		1: Meter factor [-]
		2: Meter error [%]

Nominal meter factor / error

Nominal	1000	The nominal meter factor [-] or error [%]
meter		Separate nominal meter factor / error for forward and
factor /		reverse flow
orror		

Meter factor / error curve

Meter factor /	1000	Controls whether the nominal meter factor / error or
error curve		the calibration curve is used.
		0: Disabled
		Nominal value is used
		1: Enabled
		Calibration curve is used.
Curve	1000	Controls if extrapolation is allowed when the flow
extrapolation		rate is outside the calibration curve
allowed		0: No
		When the flow rate is below the first calibration
		point or above the last calibration point,
		respectively the first or the last calibration error
		will remain in-use.
		1: Yes
		The interpolation is extrapolated when the pulse
		frequency is outside the calibrated range.
Curve flow rate	1000	Only applicable if meter factor / error curve
corrected for		interpolation is enabled and meter body correction is
MBF		enabled.
		Determines whether or not the flow computer applies
		the MBF (Meter Body Correction Factor) to the flow
		rate before using it in meter factor interpolation.
		0: Disabled
		Uncorrected flow rate is used in meter factor /
		error curve interpolation
		1: Enabled
		Corrected flow rate is used in meter factor / error
		curve interpolation
Prove base flow	1000	Only applicable if meter factor / error curve
rate		interpolation is enabled.
(forward or		Base flow rate at which the offset from the meter
reverse)		factor curve is calculated.
		[m3/hr] in case of a volume flow meter, [kg/hr] in
		case of a mass flow meter.
		The actual prove flow rate should not differ too much
		from this prove base flow rate.

Meter factor offset

Meter factor offset (forward or reverse)		Only applicable if meter factor / error curve interpolation is enabled.
		Offset from the meter factor curve as determined from proving.
		Calculated by the flow computer based on the prove result.
Custom n	neter fac	tor
Custom	1000	If enabled, the meter factor value that is written to

meter factor	the 'Custom meter factor' is used instead of the
	nominal or curve meter factor / error.
	0: Disabled
	1: Enabled

Meter factor / error curves

The flow computer uses separate meter factor / error curves for forward and reverse flow.

Meter factor / error curves are only visible if meter factor / error curve interpolation is enabled.

The reverse meter factor / error curve is only visible if reverse totalizers are enabled.

Display \rightarrow Configuration, Run <x>, Flow meter, Meter factor, Meter factors curve

With <x> the module number of the meter run

Point x –Flow rate	1000	Flow rate [unit/h] of the calibration point
Point x – Meter factor / error	1000	Meter factor [-] or Meter error [%] of the calibration point, depending on the selected Type of input value.

Remarks:

- Flow rates must be in ascending order
- Up to 12 points can be defined. For unused points, leave the flow rate to 0. E.g. when the curve has 6 points, the flow rates of points 7 through 12 must be set to 0.

Meter factor offset

Meter	Offset from the meter factor curve as determined from
factor	proving.
offset	Calculated by the flow computer based on the prove
	result.

Data valid input

The Data valid input is an optional input that can be used to control the accountable totals (for MID compliance). It is usually only applicable for smart flow meters (e.g. ultrasonic or Coriolis) that provide a data valid output signal.

The Data Valid can also be used as a permissive for flow control.

Display \rightarrow Configuration, Run <x>, Flow meter, Data valid input

with <x> the module number of the meter run

Data valid	1000	Selects the data valid input type
input type		0: None
		Data valid check is disabled
		1: Digital input
		Reads the data valid status from a digital input
		2: Smart meter input
		Uses the data valid status from the flow meter
		Modbus communication
		3: Custom
		The value that is written to tag Data valid custom
		condition will be used. Use this option if the data

		valid condition is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the data valid condition.
Data valid digital input	1000	Only applicable if Data valid input type is 'Digital input'.
module		Number of the flow module to which the signal is physically connected.
		-1: Local module means the module of the meter run itself
Data valid digital input	1000	Only applicable if Data valid input type is 'Digital input'.
channel		Number of the digital channel on the selected module to which the signal is physically connected.

Flow direction

Only available if **Reverse totals** are enabled (Display → Configuration, Overall setup, Common settings)

The flow direction is used to switch between the forward and reverse totals and averages.

Display \rightarrow Configuration, Run <x>, Flow meter, Flow direction

with <x> the module number of the meter run

Flow direction input

Flow direction	1000	Selects the flow direction input type
input type		1: Meter pulse phase
		Only applies to dual pulse meters. The flow direction is derived from the sequence of the dual pulses. See paragraph 'Pulse input' for more details.
		2: Digital input Reads the flow direction status from a digital input (0: Forward, 1: Reverse)
		3: Smart meter Modbus
		Uses the flow direction from the flow meter Modbus communication
		4: Custom
		The value that is written to tag Flow direction custom value will be used. Use this option if the flow direction value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the flow direction.
Flow direction digital input	1000	Only applicable if Flow direction input type is 'Digital input'.
module		Number of the flow module to which the signal is physically connected.
Flow direction digital input	1000	Only applicable if Flow direction input type is 'Digital input'.
channel		Number of the digital channel on the selected module to which the signal is physically connected.

Flow direction output

Flow direction	600	Enables / disables the flow direction digital
digital output		output.
		0: Disabled
		1: Enabled
Flow direction	600	Number of the flow module to which the signal is
digital output		physically connected.
module		-1: Local module means the module of the meter
		run itself
Flow direction	600	Number of the digital channel on the selected
digital output		module to which the signal is physically connected.

Meter body correction

Only available if Meter device type is 'Pulse', 'Smart' or 'Smart/Pulse'

The meter body correction facility is mainly meant for ultrasonic flow meters for which a correction of the expansion of the meter body may be required.

The meter body factor (MBF) accounts for the influence of temperature and pressure on the meter's steel.

Refer to chapter Calculations for more details

Display \rightarrow Configuration, Run <x>, Flow meter, Meter body correction

with <x> the module number of the meter run

If the flow rate value indicated by the smart flow meter already includes the correction for meter body

expansion, then the **Meter Body Correction** in the flow computer must be disabled.

Meter body	1000	Controls whether meter body correction is
correction		enabled or not
		0: Disabled
		1: Enabled
		 -1: Local module means the module of the meter run itself
Meter body	1000	Controls how the meter body correction factor is
correction		calculated
type		1: Formula
		Calculated the meter body correction factor using the formula:
		MBF = 1 + Temp coef * (T - Tref) + Pres coef * (P - Pref)
		2: Custom
		Uses the value [-] that is written to the Custom meter body correction factor . Use this option if you want to apply user-defined calculations to the meter body correction factor

Calculation constants

1000	Reference temperature for body correction [°C]
1000	Reference pressure for body correction [bar(g)]
1000	1: Use parameter Uses the body expansion coefficients that are configured in the flow computer
	2: Read from flow meter Uses the body expansion coefficients that are read from the smart meter
	Note that communication of the body expansion coefficients via Modbus is not supported by all smart meters.
	1000

User coefficients

Cubical	1000	Cubical temperature expansion coefficient [1/K]
temperature		(same as 1/°C)

expansion coefficient		Equals linear temperature expansion coefficient multiplied by 3. Typical values are 4.12 E-5 for carbon steel and 5.23 E-5 for stainless steel.
Cubical	1000	Cubical pressure expansion coefficient [1/bar]
pressure expansion coefficient		Equals linear pressure expansion coefficient multiplied by 3. Typical value is 6 E-6 both for carbon steel and stainless steel.

Indicated totalizers

From this display the (forward and reverse) indicated totalizers can be adjusted.

Display \rightarrow Configuration, Run <x>, Flow meter, Indicated totalizers

with <x> the module number of the meter run

This feature can be used to make the indicated totalizers on the flow computer run in line with the totalizers indicated on the meter. This is mainly applicable to ultrasonic meters and Coriolis meters that have a display showing an (indicated) volume or mass totalizer.

The unit of the indicated totalizer is either [m3] or [kg] depending on the meter quantity type.

Forward totalizer

Preset fwd indicated totalizer value	1000	New value ([m3] or [kg]) for the forward indicated totalizer
Accept fwd totalizer	1000	Command to accept the new value for the forward indicated totalizer

Reverse totalizer

Preset rev indicated totalizer value	1000	New value ([m3] or [kg]) for the reverse indicated totalizer
Accept rev totalizer	1000	Command to accept the new value for the reverse indicated totalizer

Serial mode

Only applicable for FC types:

Station/run Station/proving/run 'Run only' with the run being part of a remote station

Serial mode avoids the totals of meters that are set in a serial configuration to be added together in a station total. If serial mode for a run is active, the totalizers of that run are not taken into account in the station totalizers.

Display → Configuration, Run <x>, Flow meter, Serial mode

with <x> the module number of the meter run

Serial mode can be activated by manual command, or from a digital input. The digital input may be connected to a status output of a 'crossover valve', by which 2 meters can be put into

serial configuration. From this valve status the flow computer then can detect if the meters are in serial configuration or not.

Serial	1000	Enables or disables the serial mode logic for this meter.
mode		0: Disabled
		1: Enabled

Serial mode input type

Serial mode	1000	Enables or disables the serial mode logic for this
input type		meter.
		0: None
		Serial mode logic is disabled
		1: Manual
		The meter is set into / put out of serial mode by manual commands
		2: Digital input
		The meter is set into / put out of serial mode by reading a digital input.
		3: Custom
		Uses the status that is written to the Serial mode custom input value. Use this option if the serial mode status is received through a Modbus communications link, or if you want to apply user- defined logic to the serial mode status.

Serial mode digital input

Serial mode digital input	1000	Only applicable if Serial mode input type is 'Digital input'.
module		Number of the flow module to which the signal is physically connected.
		-1: Local module means the module of the meter run itself
Serial mode digital input	1000	Only applicable if Serial mode input type is 'Digital input'.
channel		Number of the digital channel on the selected module to which the signal is physically connected.
Serial mode digital input	1000	Only applicable if Serial mode input type is 'Digital input'.
polarity		Polarity of the digital input to which the signal is physically connected.
		1: Normal
		2: Inverted

Serial mode switch permissive

Serial mode switch permissive	1000	Determines whether or not a serial mode switch permissive is taken into account. If enabled the run can only be manually put into / out of serial mode if the serial mode switch permissive (to be written through
		Modbus or using a 'custom calculation') is ON.
		0: Disabled
		1: Enabled

Orifice

For orifice plates in accordance with ISO-5167 or AGA-3.

Only available if Meter device type is 'Orifice'

Display \rightarrow Configuration, Run <x>, Flow meter, Orifice

with <x> the module number of the meter run

Meter active settings

Low flow	1000	
cutoff dP		

Meter active threshold dP. The meter will be considered inactive when the actual differential pressure [mbar] is below this limit value.

		Depending on the settings 'Disable totals when meter inactive' and 'Set flow rate to 0 when meter inactive' the totals are stopped and / or the flow rate is set to zero (refer to paragraph 'Overall setup').
Enable meter inactive custom condition	1000	If enabled, the 'meter inactive custom condition' of the meter run can be used to disable / enable the meter totals and / or set the flow rate to 0 through an internal 'calculation' or through communication. Should only be enabled if needed.
		0: Disabled
		1: Enabled

Calculation method

Orifice	1000	Defines the standard used for the calculations
calculation		1: ISO-5167
method		2: AGA-3 flange tappings
		3: AGA-3 pipe tappings
ISO5167 edition	1000	The edition of the ISO-5167 standard to be used
		for the flow calculations.
		1: 1991
		2: 1998
		3: 2003
		Only applicable if Orifice calculation method is
		'ISO-5167'

Pipe settings

Pipe diameter	1000	Internal pipe diameter [mm]
Pipe reference temperature	1000	Reference temperature for the specified pipe diameter [°C]
Pipe expansion factor - type	1000	Selects the pipe material. Used to set the pipe linear thermal expansion factor.
		1: Carbon steel
		1.12e-5 [1/°C]
		2: Stainless steel 304
		1.73e-5 [1/°C]
		3: Stainless steel 316
		1.59e-5 [1/°C]
		4: Monel
		1.43e-5 [1/°C]
		5: User-defined
		(uses the 'Pipe expansion factor - user')
Pipe expansion	1000	User-defined value for pipe linear thermal
factor - user		expansion factor [1/°C]
		Only used when 'Pipe expansion factor - type' is
		set to 'User-defined'

Device settings

Device settings	5	
Device diameter	1000	Orifice internal diameter [mm]
Device reference	1000	Reference temperature for the specified
temperature		device diameter [°C]
Device expansion	1000	Selects the orifice material. Used to set the
factor - type		device linear thermal expansion factor.
		1: Carbon steel
		1.12e-5 [1/°C]
		2: Stainless steel 304
		1.73e-5 [1/°C]
		3: Stainless steel 316
		1.59e-5 [1/°C]
		4: Monel
		1.43e-5 [1/°C]
		5: User-defined
		(uses the Device expansion factor - user)
Device expansion	1000	User-defined value for device linear thermal
factor - user		expansion factor [1/°C]
		Only used when 'Device expansion factor -
		type' is set to 'User-defined'
Orifice	1000	Location of the pressure tappings in
configuration		accordance with the ISO5167
		1: Corner tappings
		2: D and D/2 tappings

		2. Elanga tanninga
		3: Flange tappings Only applicable if Orifice calculation method
		is 'ISO-5167'
Drain hole	1000	The drain hole size [mm]. When the value is > 0
diameter	1000	then an additional correction on the orifice
		diameter will be applied to account for the
		effect the drain hole in accordance British
		standard 1042: Part 1: 1964 Refer to chapter
		Calculations for more details
		Calculations for more details
Pressure sett	ings	
Pressure	1000	Location of the pressure tap used for the static
transmitter		pressure relative to the orifice plate.
location		1: Upstream tapping
		2: Downstream tapping
		If 'Downstream tapping' is selected, a
		correction of the meter pressure to upstream
		conditions is applied. Refer to chapter
		Calculations for more details
Temperature	settings	
Temperature	1000	Location of the temperature element relative
transmitter		to the orifice plate
location		1: Upstream tapping
		2: Downstream tapping
		3: Recovered pressure position
		Downstream at the location where the
		pressure has fully recovered.
		If 'Downstream tapping' or 'Recovered pressure
		position' is selected, a correction of the meter
		temperature to upstream conditions is applied
		Refer to chapter Calculations for more details
Temperature	1000	This parameter specifies how the temperature
correction		must be corrected from downstream /
		recovered to upstream conditions
		1: Isentropic exponent
		Isentropic expansion using $(1-\kappa)/\kappa$ as the
		temperature referral exponent
		2: Temperature exponent
		Isentropic expansion using the Temperature
		Exponent parameter value as the
		temperature referral exponent [-].
		Please note that the 'Temperature Exponent
		must be < 0
		Inust be < 0
		3: Joule Thomson
		3: Joule Thomson Isenthalpic expansion using the
		3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule
		3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method
Temperatura	1000	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard.
•	1000	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be
•	1000	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of
•	1000	 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature
exponent		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'.
exponent Joule Thomson	1000	 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined.
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient.
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section
exponent Joule Thomson		 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation
exponent Joule Thomson coefficient type	1000	 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section
exponent Joule Thomson coefficient type Density settir	1000	 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section 'Calculations' for details.
	1000 ngs 2000 This	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section 'Calculations' for details.
exponent Joule Thomson coefficient type Density settir	1000 ngs 2000 This corr	 3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient (°C/bar). This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section 'Calculations' for details. aparameter specifies how the density must be rected from recovered to upstream conditions.
Doule Thomson coefficient type Density settin Density 10	1000 ngs D00 This corr Den	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section 'Calculations' for details.
Doule Thomson coefficient type Density settin Density 10	1000 ngs D00 This corr Den calc	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section 'Calculations' for details.
Doule Thomson coefficient type Density settin Density 10	1000 ngs 000 This corr Der calc den	3: Joule Thomson Isenthalpic expansion using the Temperature Exponent as the Joule Thomson coefficient [°C/bar]. This method is prescribed by ISO5167-1:2003 standard. Only used when temperature has to be corrected to upstream conditions and type of temperature correction is either 'Temperature exponent' or 'Joule Thomson'. Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule Thomson coefficient is defined. 1: Fixed value Uses the temperature exponent as a fixed Joule Thomson coefficient. 2: Calculated Joule Thomson coefficient calculation according to ISO/TR 9464. See section 'Calculations' for details.

ISO5167 settings		
ISO5167 edition 1000	The edition of the ISO-5167 standard to be used for the flow calculations.	
	1: 1991	
	2: 1998	
	3: 2003	
	Only applicable if Orifice calculation method is (ISO-5167'	

AGA 3 settings

AGA-3 edition	1000	The edition of the AGA-3 standard to be used for the flow calculations. 1: 1992 2: 2012 Only applicable if Orifice calculation method is
AGA3 Fpwl gravitational	1000	'AGA-3 flange tappings' Gravitational correction factor (Fpwl) for the AGA3 calculations
correction factor		Only applicable if Orifice calculation method is 'AGA-3 flange tappings'
AGA3 pipe tappings rounding	1000	Enables / disables rounding of intermediate calculation values. Only applicable if Orifice calculation method is 'AGA-3 pipe tappings'

Product properties

Dynamic	Dynamic viscosity of the gas at flowing conditions
viscosity	[Pa.s]. 1 [Pa.s] = 1000 [cP].
Isentropic	Isentropic exponent of the gas at flowing conditions
exponent	[dimensionless]. Also referred to as κ (kappa). For an
	ideal gas this coefficient is equal to the ratio of the
	specific heat capacity at constant pressure to the
	specific heat at constant volume.

Venturi

For classical venturi tubes in accordance with ISO-5167.

Only available if Meter device type is 'Venturi'

	Q
\sim	5

Display \rightarrow Configuration, Run <x>, Flow meter, Venturi

with <x> the module number of the meter run

Low flow cutoff dP	1000	Meter active threshold dP. The meter will be considered inactive when the actual differential
		pressure [mbar] is below this limit value.
		Depending on the settings ' Disable totals when meter inactive' and 'Set flow rate to 0 when meter
		inactive ² the totals are stopped and / or the flow rate is set to zero (refer to paragraph 'Overall setup').
Enable meter inactive custom condition	1000	If enabled, the 'meter inactive custom condition' of the meter run can be used to disable / enable the meter totals and / or set the flow rate to 0 through an internal 'calculation' or through communication. Should only be enabled if needed. 0: Disabled
		1: Enabled

Pipe settings

Pipe diameter	1000	Internal pipe diameter [mm]
Pipe reference	1000	Reference temperature for the specified pipe
temperature		diameter [°C]
Pipe expansion	1000	Selects the pipe material. Used to set the pipe

, , ,		
factor - type		linear thermal expansion factor.
		1: Carbon steel
		1.12e-5 [1/°C]
		2: Stainless steel 304
		1.73e-5 [1/°C]
		3: Stainless steel 316
		1.59e-5 [1/°C]
		4: Monel
		1.43e-5 [1/°C]
		5: User-defined
Dina overancian	1000	(uses the 'Pipe expansion factor - user') User-defined value for pipe linear thermal
Pipe expansion factor - user	1000	expansion factor [1/°C]
lactor - user		Only used when Pipe expansion factor - type is
		set to 'User-defined'
Device setting	s	
		Ventuui internel die meter [mene]
Device diameter	1000	Venturi internal diameter [mm]
Device reference temperature	1000	Reference temperature for the specified device diameter [°C]
Device expansion	1000	Selects the venturi material. Used to set the
factor - type	1000	device linear thermal expansion factor.
		1: Carbon steel
		1.12e-5 [1/°C]
		2: Stainless steel 304
		1.73e-5 [1/°C]
		3: Stainless steel 316
		1.59e-5 [1/°C]
		4: Monel
		1.43e-5 [1/°C]
		5: User-defined
		(uses the Device expansion factor - user)
Device expansion	1000	User-defined value for device linear thermal
factor - user		expansion factor [1/°C]
		Only used when Device expansion factor - type
		is set to 'User-defined'
Venturi	1000	ISO5167 specifies different discharge
configuration		coefficients for the different fabrication
		methods. By selecting the right configuration,
		the appropriate discharge coefficient is used.
		1: As cast convergent section
		2: Rough welded
		3: Machined 4: User-defined
		When 'User-defined' is selected then the
		parameter 'Discharge coefficient' will be used in the calculations. Note that he use of this option
		is not in accordance to the standard.
		is not in accordance to the Standard.
Discharge coe		
	000	Defines the way the discharge coefficient is
coefficient		determined.
type		1: Fixed value
		Uses the discharge coefficient fixed value.
		2: Interpolated
		Uses an interpolated discharge coefficient from
		the discharge coefficient curve. The selected discharge coefficient is only used if
		The selected discharge coefficient is only used if the Venturi configuration is set to 'User defined'.
		Otherwise the discharge coefficient from the
		ISO5167 standard is used.
Discharge 1	000	Fixed value of the discharge coefficient of the
coefficient	000	cone.
fixed value		conc.
Pressure setti	ngs	
Pressure	1000	Location of the pressure tap used for the static
transmitter		pressure relative to the venturi.

Pressure transmitter location	1000	Location of the pressure tap used for the static pressure relative to the venturi. 1: Upstream tapping 2: Downstream tapping If 'Downstream tapping' is selected, a correction
		of the meter pressure to upstream conditions is applied. Refer to chapter Calculations for more details
Pressure loss	1000	The method for determining the pressure loss

mode		over the venturi tube
		1: Absolute value
		The pressure loss is taken as an absolute
		value (as set in parameter 'Pressure Loss
		Value')
		2: Percentage of dP
		The pressure loss value is taken as a
		percentage of the differential pressure. The
		percentage is as set in parameter 'Pressure
		Loss Value'.
Pressure loss	1000	The pressure loss value either as an absolute
value		value [mbar] or as a percentage [%] of dP.
Pressure loss	1000	Enables / disables pressure loss measurement
measurement		using a dP cell. If enabled this measured value is
		used in the ISO5167 venturi calculations
		(temperature referral) and for wet gas
		correction calculation (if applicable). If pressure
		loss measurement is disabled, then the (fixed)
		pressure loss value is used for temperature
		referral.
		0: Disabled
		1: Enabled

Temperature settings

e

Temperature	1000	Location of the temperature element relative to
transmitter		the venturi
location		1: Upstream tapping
		2: Downstream tapping
		3: Recovered pressure position
		Downstream at the location where the
		pressure has fully recovered.
		If 'Downstream tapping' or 'Recovered pressure
		position' is selected, a correction of the meter
		temperature to upstream conditions is applied.
		Refer to chapter Calculations for more details
Temperature	1000	This parameter specifies how the temperature
correction		must be corrected from downstream / recovered
		to upstream conditions
		1: Isentropic exponent
		Isentropic expansion using (1- κ)/ κ as the
		temperature referral exponent
		2: Temperature exponent
		Isentropic expansion using the Temperature
		Exponent parameter value as the temperature
		referral exponent [-].
		Please note that the 'Temperature Exponent'
		must be < 0
		3: Joule Thomson
		Isenthalpic expansion using the Temperature
		Exponent as the Joule Thomson coefficient
		[°C/bar]. This method is prescribed by
	1000	ISO5167-1:2003.
Temperature	1000	Only used when temperature has to be corrected
exponent		to upstream conditions and type of temperature
		correction is either 'Temperature exponent' or 'Joule Thomson'.
Joule Thomson	1000	Only applicable if Temperature correction is set
coefficient type	1000	to 'Joule Thomson'. Defines how the Joule
coefficient type		Thomson coefficient is defined.
		1: Fixed value
		Uses the temperature exponent as a fixed
		Joule Thomson coefficient.
		2: Calculated
		Joule Thomson coefficient calculation
		according to ISO/TR 9464. See section
		'Calculations' for details.
Density setti	nas	
-	1000	This parameter specifies how the density must be

Density exponent	1000	This parameter specifies how the density must be corrected from recovered to upstream conditions.
		Density correction is only applied if meter density calculation method is set to 'ISO5167 upstream density' (See 'Run setup")
		If Density exponent = 0, then isentropic density correction is applied (using 1/isentropic exponent)

Wet gas correction

Wet gas	1000	Enables or disables wet gas correction:
correction		0: None
type		No wet gas correction
		1: De Leeuw
		Wet gas correction according to De Leeuw
		2: Reader-Harris
		Wet gas correction according to Reader-Harris
Product pr	operties	
	-	Dynamic viscosity of the gas at flowing conditions
Product pr Dynamic viscosity	operties 1000	Dynamic viscosity of the gas at flowing conditions [Pa.s]. 1 [Pa.s] = 1000 [cP].
Dynamic viscosity	-	[Pa.s]. 1 [Pa.s] = 1000 [cP].
Dynamic viscosity Isentropic	1000	, , ,
Dynamic viscosity	1000	[Pa.s]. 1 [Pa.s] = 1000 [cP]. Isentropic exponent of the gas at flowing
Dynamic viscosity Isentropic	1000	[Pa.s]. 1 [Pa.s] = 1000 [cP]. Isentropic exponent of the gas at flowing conditions [dimensionless]. Also referred to as κ

V-cone

Settings for McCrometer V-cone and wafer cone flow meters.

Only available if Meter device type is 'V-cone'

S Ø

Display \rightarrow Configuration, Run <x>, Flow meter, V-cone

with <x> the module number of the meter run

Meter active settings

Low flow cutoff dP	1000	Meter active threshold dP. The meter will be considered inactive when the actual differential pressure [mbar] is below this limit value.
		Depending on the settings 'Disable totals when meter inactive' and 'Set flow rate to 0 when meter inactive' the totals are stopped and / or the flow rate is set to zero (refer to paragraph 'Overall setup').
Enable meter inactive custom condition	1000	If enabled, the 'meter inactive custom condition' of the meter run can be used to disable / enable the meter totals and / or set the flow rate to 0 through an internal 'calculation' or through communication. Should only be enabled if needed. 0: Disabled
		1: Enabled

Pipe settings

Pipe diameter	1000	Internal pipe diameter [mm]
Pipe reference	1000	Reference temperature for the specified pipe
temperature		diameter [°C]
Pipe expansion	1000	Selects the pipe material. Used to set the pipe
factor - type		linear thermal expansion factor.
		1: Carbon steel
		1.12e-5 [1/°C]
		2: Stainless steel 304
		1.73e-5 [1/°C]
		3: Stainless steel 316
		1.59e-5 [1/°C]
		4: Monel
		1.43e-5 [1/°C]
		5: User-defined
		(uses the 'Pipe expansion factor - user')
Pipe expansion	1000	User-defined value for pipe linear thermal
factor - user		expansion factor [1/°C]
		Only used if Pipe expansion factor - type is set
		to 'User-defined'

Device settings

Device diameter	1000	V-cone internal diameter [mm]
Device reference temperature	1000	Reference temperature for the specified device diameter [°C]
Device expansion	1000	Selects the V-cone material. Used to set the device linear thermal expansion factor.
factor - type		1: Carbon steel 1.12e-5 [1/°C]
		2: Stainless steel 304 1.73e-5 [1/°C]
		3: Stainless steel 316 1.59e-5 [1/°C]
		4: Monel 1.43e-5 [1/°C]
		5: User-defined (uses the Device expansion factor - user)
Device expansion	1000	User-defined value for device linear thermal expansion factor [1/°C]
factor - user		Only used if Device expansion factor – type is set to 'User defined'
V-cone configuration	1000	V-cone configuration: 1: Standard V-cone
		2: Wafer cone

Pressure settings

Pressure transmitter	1000	Location of the pressure tap used for the static pressure relative to the v-cone.
location		1: Upstream tapping
		2: Downstream tapping
		If 'Downstream tapping' is selected, a
		correction of the meter pressure to upstream
		conditions is applied. Refer to chapter
		Calculations for more details

Temperature settings

Temperature	1000	Location of the temperature element relative
transmitter		to the v-cone
location		1: Upstream tapping
		2: Downstream tapping
		3: Recovered pressure position
		Downstream at the location where the
		pressure has fully recovered.
		If '2: Downstream tapping' or '3: Recovered
		pressure position' is selected, a correction of
		the meter temperature to upstream conditions
		is applied. Refer to chapter Calculations for more details
Temperature	1000	This parameter specifies how the temperature
correction	1000	must be corrected from downstream /
		recovered to upstream conditions
		1: Isentropic exponent
		Isentropic expansion using $(1-\kappa)/\kappa$ as the
		temperature referral exponent
		2: Temperature exponent
		Isentropic expansion using the Temperature
		Exponent parameter value as the
		temperature referral exponent [-].
		Please note that the 'Temperature Exponent'
		must be < 0
		3: Joule Thomson
		Isenthalpic expansion using the
		Temperature Exponent as the Joule
		Thomson coefficient [°C/bar]. This method
Temperature	1000	is prescribed by ISO5167-1:2003.
exponent	1000	Only used when temperature has to be
exponent		corrected to upstream conditions and type of
		temperature correction is either '2:
		Temperature exponent' or '3: Joule Thomson'.
Joule Thomson coefficient type	1000	Only applicable if Temperature correction is set to 'Joule Thomson'. Defines how the Joule

Thomson coefficient is defined.
1: Fixed value
Uses the temperature exponent as a fixed
Joule Thomson coefficient.
2: Calculated
Joule Thomson coefficient calculation
according to ISO/TR 9464. See section
'Calculations' for details.

Density se	ttings	
Density exponent	1000	This parameter specifies how the density must be corrected from recovered to upstream conditions.
		Density correction is only applied if 'meter density calculation method' is set to 'ISO5167 upstream density' (See 'Run setup")
_		If Density exponent = 0, then isentropic density correction is applied (using 1/isentropic exponent)

Discharge coefficient

Discharge coefficient type	1000	Defines the way the discharge coefficient is determined.
		1: Fixed value Uses the discharge coefficient fixed value .
		2: Interpolated Discharge coefficient calculation using a discharge coefficient curve, in which the discharge coefficient as a function of the Reynolds number is given.
Discharge coefficient fixed value	1000	Fixed value of the discharge coefficient of the cone.

Product properties

Dynamic viscosity	1000	Dynamic viscosity of the gas at flowing conditions [Pa.s]. 1 [Pa.s] = 1000 [cP].
lsentropic exponent	1000	Isentropic exponent of the gas at flowing conditions [dimensionless]. Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the specific heat capacity at constant pressure to the specific heat at constant volume.

Venturi nozzle, long radius nozzle and ISA1932 nozzle

For venturi nozzles, long radius nozzles and ISA1932 nozzles in accordance with ISO-5167.

Only available if Meter device type is 'Venturi nozzle', 'Long radius nozzle' or 'ISA1932 nozzle'

Display \rightarrow Configuration, Run <x>, Flow meter, Venturi nozzle

Display \rightarrow Configuration, Run <x>, Flow meter, Long radius nozzle

Display \rightarrow Configuration, Run <x>, Flow meter, ISA1932 nozzle

with <x> the module number of the meter run

Meter active settings

Low flow cutoff dP	1000	Meter active threshold dP. The meter will be considered inactive when the actual differential
		pressure [mbar] is below this limit value. Depending on the settings 'Disable totals when meter inactive' and 'Set flow rate to 0 when meter inactive' the totals are stopped and / or the flow rate is set to zero (refer to paragraph 'Overall setup').
Enable meter inactive custom condition	1000	If enabled, the 'meter inactive custom condition' of the meter run can be used to disable / enable the meter totals and / or set the flow rate to 0 through an internal 'calculation' or through communication. Should only be enabled if

		needed.
		0: Disabled
		1: Enabled
Calculatio	n method	
ISO5167	1000	The edition of the ISO-5167 standard to be used
edition		for the flow calculations.
		1: 1991
		2: 1998
		3: 2003
		Only applicable to long radius nozzles and ISA1932 nozzles

Pipe diameter 1000 Internal pipe diameter [mm] Pipe diameter 1000 Internal pipe diameter [mm] Pipe reference 1000 Reference temperature for the specified pipe temperature diameter [°C] Pipe expansion 1000 Selects the pipe material. Used to set the pipe factor -type linear thermal expansion factor. 1: Carbon steel 1.12e-5 [1/°C] 2: Stainless steel 304 1.73e-5 [1/°C] 3: Stainless steel 316 1.59e-5 [1/°C] 4: Monel 1.43e-5 [1/°C] 5: User-defined (uses the 'Pipe expansion factor - user') 1000 User-defined value for pipe linear thermal Pipe expansion factor -user expansion factor [1/°C] Only used when Pipe expansion factor - type is set to 'User-defined'

Device settings

1000	Nozzle internal diameter [mm]
1000	Reference temperature for the specified device diameter [°C]
1000	Selects the nozzle material. Used to set the device linear thermal expansion factor. 1: Carbon steel
	1.12e-5 [1/°C]
	2: Stainless steel 304
	1.73e-5 [1/°C]
	3: Stainless steel 316
	1.59e-5 [1/°C]
	4: Monel
	1.43e-5 [1/°C]
	5: User-defined
	(uses the Device expansion factor - user)
1000	User-defined value for venturi linear thermal expansion factor [1/°C]
	Only used when Device expansion factor - type is set to 'User-defined'
	1000

Pressure settings

Pressure transmitter	1000	Location of the pressure tap used for the static pressure relative to the nozzle.
location		1: Upstream tapping
		2: Downstream tapping
		If 'Downstream tapping' is selected, a
		correction of the meter pressure to upstream
		conditions is applied. Refer to chapter
		Calculations for more details
Pressure loss	1000	Only applicable to venturi nozzles.
mode		The method for determining the pressure loss over the nozzle
		1: Absolute value
		The pressure loss is taken as an absolute value (as set in parameter 'Pressure Loss Value')

		2: Percentage of dP
		The pressure loss value is taken as a percentage of the differential pressure. The
		percentage is as set in parameter 'Pressure Loss Value'.
Pressure loss	1000	Only applicable to venturi nozzles.
value		The pressure loss value either as an absolute value [mbar] or as a percentage [%] of dP.

Temperature settings

Temperature	1000	Location of the temperature element relative
transmitter		to the nozzle
location		1: Upstream tapping
		2: Downstream tapping
		3: Recovered pressure position
		Downstream at the location where the
		pressure has fully recovered.
		If 'Downstream tapping' or 'Recovered pressure
		position' is selected, a correction of the meter
		temperature to upstream conditions is applied.
		Refer to chapter Calculations for more details
Temperature	1000	This parameter specifies how the temperature
correction		must be corrected from downstream /
		recovered to upstream conditions
		1: Isentropic exponent
		Isentropic expansion using $(1-\kappa)/\kappa$ as the
		temperature referral exponent
		2: Temperature exponent
		Isentropic expansion using the 'Temperature
		Exponent' parameter value as the
		temperature referral exponent [-]. Please
		note that the 'Temperature Exponent' must
		be < 0
		3: Joule Thomson
		Isenthalpic expansion using the
		'Temperature Exponent' as the Joule
		Thomson coefficient [°C/bar]. This method
		is prescribed by ISO5167-1:2003.
Temperature	1000	Only used when temperature has to be
exponent		corrected to upstream conditions and type of
		temperature correction is either 'Temperature
		exponent' or 'Joule Thomson'.

Product properties

Dynamic viscosity	1000	Dynamic viscosity of the gas at flowing conditions [Pa.s]. 1 [Pa.s] = 1000 [cP].
lsentropic exponent	1000	Isentropic exponent of the gas at flowing conditions [dimensionless]. Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the specific heat capacity at constant pressure to the specific heat at constant volume.

Discharge coefficient curve

Only available if **Meter device type** is 'Venturi' or 'V-cone' AND **Venturi configuration** is set to 'User-defined' (only applicable to venturi) AND **Discharge coefficient calculation method** is 'Interpolated'.

Display \rightarrow Configuration, Run <x>, Flow meter, Discharge coefficient curve

with <x> the module number of the meter run

Curve	1000	Controls if extrapolation is allowed when the
extrapolation		Reynolds nr. is outside the calibration curve
		0: No

		When the Reynolds nr. is below the first calibration point or above the last calibration point, then respectively the first or the last calibration discharge coefficient will remain in-use.
		1: Yes
		The interpolation is extrapolated when the
		Reynolds nr. is outside the calibrated range.
Point x –Reynolds	1000	Reynolds nr. [-] of the curve point.
Point x –	1000	Discharge coefficient [-] of the curve point.
Discharge		
coefficient		

- Reynolds nr. must be in ascending order
- Up to 12 points can be defined. For unused points, leave the Reynolds nr. at 0. E.g. when the curve has 6 points, the Reynolds nr. of points 7 through 12 must be set to 0.

dP inputs

Only available if Meter device type is 'Orifice', 'Venturi', 'V-cone', 'Venturi nozzle', 'Long radius nozzle' or 'ISA1932 nozzle'

Up to 3 differential pressure transmitters can be used for dP measurement, required for orifice, venturi, v-cone, venturi nozzle, long radius nozzle and ISA1932 nozzle flow meters.

The flow computer can handle the following type of cell range configurations:

- 1 cell, full range
- 2 cells, low range and high range
- 2 cells, full range
- 3 cells, low, mid and high range
- 3 cells, 1 low range and 2 high range
- 3 cells, full range

The flow computer selects between the configured input cells based on the actual measured value and the failure status of each cell.

The selection logic is described in chapter 'Calculations'.

dP selection

Display \rightarrow Configuration, Run <x>, Flow meter, dP inputs, dP selection

with <x> the module number of the meter run

dP selection 1000		dP selection type	
type		1: 1 cell full range	
		Cell A - full range	
		2: 2 cells low / high range	
	Cell A - low range		
		Cell B - high range	
		3: 2 cells full range	
		Cell A - full range	
		Cell B - full range	
		4: 3 cells low / mid / high range	
		Cell A - low range	

		Cell B - mid range
		Cell C - high range
		5: 3 cells low / high / high range
		Cell A - low range
		Cell B - high range
		Cell C - high range
		6: 3 cells full range
		Cell A - full range
		Cell B - full range
		Cell C - full range
Switch up	1000	Switch-up value expressed as percentage of
percentage		span of the lower range.
		Only used for 2 or 3 cells if more than one dP
		range is used. Refer to chapter 'Calculations' for
		more information on its usage.
		The dP cell selection switches from low range to
		high range if the reading of the low range cell
		exceeds this percentage.
Switch down	1000	Switch-down value expressed as percentage of
percentage		span of the lower range.
, · · · · · · · · · · · · · · · · · · ·		Only used for 2 or 3 cells if more than one dP
		range is used. Refer to chapter 'Calculations' for
		more information on its usage.
		The dP cell selection switches from high range
		to low range if the reading of the low range cell
		gets below this percentage.
dP auto	1000	Determines whether or not to switch back to a
switchback	1000	dP transmitter when it becomes healthy after a
SWITCHDUCK		failure. Refer to chapter 'Calculations' for more
		information on its usage.
		0: Disabled
		1: Enabled
dP deviation	1000	
	1000	Differential pressure deviation limit [mbar]. Only
limit		applicable if dP selection type is '2 cells full
		range', '3 cells low/high/high' or '3 cells full
		range'.
		If the deviation between two dP cells of the
		same range exceeds this limit, then a dP
		deviation alarm is generated.

Fallback	1000	Determines what to do if the selected dP transmitter		
type	1000	fails and there is no other dP transmitter to switch		
type		to, or if all applicable dP transmitters fail.		
		1: Last good value		
		Keep on using the last value that was obtained		
		when the input was still healthy.		
		2: Fallback value		
		Use the value as specified by parameter 'Fallback		
		value'		
		The fallback value is usually a fixed value and will		
		generally never be changed during the lifetime of		
		the flow computer.		
		3: Override value		
		Use the value as specified by parameter 'Override		
		value'		
Fallback	1000	Only used if Fallback type is 'Fallback value'.		
value		Represents the differential pressure [mbar] that is		
		used when the input fails.		

dP input A, B, C, Pressure loss

Depending on the **dP selection type**, one, two or three dP inputs (measuring the differential pressure between the upstream and downstream positions) are available.

The pressure loss input (measuring the pressure loss between the upstream and recovered positions) is only available for venturi dP meters with **pressure loss measurement** enabled.

Display \rightarrow Configuration, Run <x>, Flow meter, dP inputs, dP input A/B/C

Display \rightarrow Configuration, Run <x>, Flow meter, dP inputs, Pressure loss

with <x> the module number of the meter run

Input type

Input type	1000	Type of input for dP cell
		2: Analog input
		4: HART
		5: Custom
		If option 5: Custom is selected then the value
		[mbar] that is written to tag Differential pressure
		A/B/C custom value will be used. Use this option if
		the differential pressure value is sent to the flow
		computer over a Modbus communications link or if
		you want to apply user-defined calculations to the
		differential pressure.

Analog input settings

These settings are only applicable if **diff. pressure input type** is 'Analog input', or if **diff. pressure input type** is 'HART' with option **HART to analog fallback** enabled

Diff. pressure analog input module	1000	Number of the flow module to which the dP signal is physically connected to. -1: Local module means the module of the meter run itself
Diff. pressure analog input channel	1000	Number of the analog input channel on the selected module to which the dP signal is physically connected.

HART settings

These settings are only applicable if **diff. pressure input type** is 'HART'

Diff. pressure HART internal device nr.	1000	Internal device nr. of the HART transmitter as assigned in the configuration software (Flow- Xpress: 'Ports & Devices')
Diff. pressure HART variable value	1000	Determines which of the 4 HART variables provided by the HART transmitter is used. Select the variable that represents the dP value [mbar] . Usually this is the 1st (primary) variable.
Diff. pressure HART full scale	1000	Full scale [mbar] of the dP transmitter. Used to calculate the actual percentage of range, which is required for dP selection if multiple dP transmitters with different ranges are used.
Diff. pressure HART zero scale	1000	Zero scale [mbar] of the dP transmitter. Used to calculate the actual percentage of range, which is required for dP selection if multiple dP transmitters with different ranges are used.
HART to analog fallback	1000	Only applies for a HART transmitter, where the 4- 20 mA signal is provided together with the HART signal.
		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead the value corresponding to the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding to the 'Fallback type' will be used.
		If multiple HART transmitters are installed within a loop, then the HART to analog fallback option can't be used.

Input frozen alarm			ISO/DTR 11583.
Input frozen time 1000	Maximum time [s] which the input value is allowed to remain unchanged. If the input value hasn't changed during this time, an 'input frozen' alarm is given.	-	3: Interpolated Pressure loss ratio calculation using a pressure loss ratio curve, in which the pressure loss as a function of the Reynolds
	Not applicable for input type 'always use override'. Enter 0 to disable this functionality.	Pressure loss ratio 1000 – Miller A	number is given. Coefficient A for pressure loss calculation according to Miller.
		 Pressure loss ratio 1000 Miller B 	Coefficient B for pressure loss calculation according to Miller.

Pressure loss ratio 1000

– Miller C

Coefficient C for pressure loss calculation

according to Miller.

Wet gas correction

For classical venturi tubes in accordance with ISO-5167.

Only available if **Meter device type** is 'Venturi' AND **Wet gas correction type** is set to 'De Leeuw' or 'Reader-Harris'.

Display \rightarrow Configuration, Run <x>, Flow meter, Wet gas correction

with <x> the module number of the meter run

Wet gas	1000	Enables or disables wet gas correction:	
correction type		0: None	
		No wet gas correction	
		1: De Leeuw	
		Wet gas correction according to De Leeuw	
		2: Reader-Harris	
		Wet gas correction according to Reader-	
		Harris	
Pressure loss	1000	Enables / disables pressure loss	
measurement		measurement using a dP cell. If enabled this	
		measured value is used in the ISO5167 venturi	
		calculations (temperature referral) and for	
		wet gas correction calculation (if applicable).	
		If pressure loss measurement is disabled,	
		then the (fixed) pressure loss value is used	
		for temperature referral.	
		0: Disabled	
		1: Enabled	
Lockhart-	1000	Determines how the Lockhart-Martinelli nr. Is	
Martinelli		calculated (and therefore defines the basis for	
calculation type		wet gas correction).	
		1: Manual	
		Lockhart-Martinelli nr. calculated from	
		manually entered gas mass fraction.	
		2: Pressure loss	
		Lockhart-Martinelli nr. calculated from	
		measured pressure loss dP between	
		upstream and recovered positions.	
Manual gas mass	1000	Gas mass fraction [-] defined as gas mass /	
fraction		(gas mass + liquid mass) used to calculate the	
		Lockhart-Martinelli parameter.	
Liquid density	1000	Density [kg/m3] of the liquid	
Reader-Harris	1000	Coefficient H [-]. For an explanation on the	
coefficient H		use of this coefficient see the 'Calculations'	
		section.	
		Typical values are 1.00 for hydrocarbon liquids	
		and 1.35 for water	
		at ambient temperature.	
Pressure loss ratio	1000	Defines how the pressure loss ratio is	
calculation		calculated:	
method		1: Miller	
		Pressure loss ratio calculation according to	
		Miller.	
		2: ISO/DTR 11583	
		Pressure loss ratio calculation according to	

Pressure loss ratio curve

Only available if **Meter device type** is 'Venturi' AND **Wet gas correction type** is set to 'De Leeuw' or 'Reader-Harris' AND **Pressure loss measurement** is enabled AND **Pressure loss ratio calculation method** is 'Interpolated'.

Display \rightarrow Configuration, Run <x>, Flow meter, Wet gas correction, Pressure loss ratio curve

with <x> the module number of the meter run

Curve extrapolation	1000	Controls if extrapolation is allowed when the Reynolds nr. is outside the calibration curve
		0: No When the Reynolds nr. is below the first calibration point or above the last calibration point, then respectively the first or the last calibration pressure loss ratio will remain in-use.
		1: Yes The interpolation is extrapolated when the Reynolds nr. is outside the calibrated range.
Point x –Reynolds	1000	Reynolds nr. [-] of the curve point.
Point x - Pressure loss ratio	1000	Pressure loss ratio [-] of the curve point.

- Reynolds nr. must be in ascending order
- Up to 12 points can be defined. For unused points, leave the Reynolds nr. at 0. E.g. when the curve has 6 points, the Reynolds nr. of points 7 through 12 must be set to 0.

Station setup

A station consists of up to 8 runs, each of which can be a local or a remote run. Local runs are part of the station flow computer (and application; f.e. an X/P3 flow computer can contain 3 local runs), while remote runs are separate, single run flow computers, each running its own application, to which the station flow computer communicates through Modbus.

In order to be able to communicate to the remote run flow computer(s), the station flow computer must have a 'Connect to remote run' Modbus driver configured for every individual remote run (in Flow-Xpress 'Ports and Devices').

On the remote run flow computer(s) the 'Connect to remote station' Modbus driver has to be enabled (in Flow-Xpress 'Ports and Devices').

The station configuration displays are only available for the following FC types:

- Station /run
- Station / proving / run
- Station only
- Station / proving

Station setup

This display contains the general station settings. Depending on the selections made in this display, specific configuration displays for detailed configuration will be available further down the menu.

Display \rightarrow Configuration, Station, Station setup

Station data

These data are only used for reporting.

Station tag	600	Station tag (text)	
Station ID	600	Station ID (text)	

Density

These settings are replicated from the 'Density setup' display. See the paragraph 'Density setup' for a description of the individual settings.

Observed density input type Density temperature input type Density pressure input type Base density input type Specific gravity input type Relative density input type Meter density calculation method

If an observed density input other than 'none' is selected, then also a density temperature input and a density pressure input have to be configured.

1	ĩ	
	L)

If an impossible combination of settings is chosen, then a 'Density configuration error' alarm is shown.

Gas composition

Gas composition input type

This setting is replicated from the 'Gas composition' configuration display. See the paragraph 'Gas composition' for a detailed description.

Heating value

Gross 1000 See paragraph 'Heating value input' heating value input type

Station control setup

From this display the station control function flow / pressure control can be enabled or disabled.

Depending on the selections made in this display, specific configuration displays for detailed configuration will be available further down the menu.

Display \rightarrow Configuration, Run <x>, Run control setup

with <x> the module number of the meter run

Flow / pressure control

Flow /	600	With this setting flow / pressure control (PID control)
pressure		can be enabled or disabled (none=disabled). For a
control mode		thorough explanation of this setting refer to paragraph
		'Flow / pressure control'.

Meter runs

This display page gives an overview of the meter runs that make up the station.

Display \rightarrow Configuration, Station, Meter runs

Remote run device nr.	1000	Device nr. of the remote run flow computer as defined in Flow-Xpress 'Ports & devices'.
		If a valid 'Remote run' device nr. is selected (i.e. if in
		Flow-Xpress this device nr. has been assigned to a
		remote run communication device), the run will be
		designated as 'Remote'.
		If 'No Device' is selected, the run is either
		designated as 'Local' or as 'None', depending on
		the physical flow computer hardware.
Meter run <x></x>	1000	Defines how the station totals and flow rates are
totalizer type		calculated.
		1: Positive
		The flow of this run is added to the station
		totals and rates. This is the default setting.
		0: None
		The flow of this run is not taken into account in
		the station totals and rates.
		-1: Negative
		The flow of this run is subtracted from the
		station totals and rates. This option can be used
		for return flows.

System time deviation

These settings are only applicable if the flow computer is communicating to one or more remote run flow computers.

Remote run max. system time deviation	1000	If the system time of a remote run module differs from the system time of the station module by more than this amount [s], then a 'System time out of sync alarm' is generated.
Delay for system time out of sync alarms	1000	System time out of sync alarms only become active after the deviation has been larger than the 'max. deviation' during the delay time [s].

Temperature setup

Temperature transmitters

The flow computer supports the following temperature transmitter inputs:

For each run:

- One or two meter temperature transmitters (A and B)
- One density temperature transmitter

For the station:

One density temperature transmitter

Auxiliary inputs:

Two auxiliary temperature transmitters (1 and 2)

Meter temperature transmitters

Either a single temperature transmitter or dual temperature transmitters can be used. In case of dual transmitters there are several schemes for determining the in-use meter temperature (duty / standby or average) and a deviation check is done between the two temperature values.

Density temperature transmitters

Density temperature transmitters are used in combination with an observed (live) density (e.g. a densitometer) and measure the temperature at the point where the density is measured.

In case of an observed (live) density on a run, a density temperature transmitter is optional. If no density temperature transmitter is configured, the flow computer uses the meter temperature.

In case of a station observed (live) density, the use of a density temperature transmitter is obligatory.

Auxiliary temperature transmitters

Two auxiliary temperature transmitters can be defined (e.g. a station temperature). These are for informational purposes only, or can be used in custom calculations.

Display \rightarrow Configuration, Run <x>, Temperature (, Meter temperature A/B)

Display \rightarrow Configuration, Run <x>, Temperature, Density temperature

Display → Configuration, Station, Temperature

Display \rightarrow Configuration, Auxiliary inputs, Auxiliary temperature 1/2

with <x> the module number of the meter run

For each temperature transmitter the following settings are available:

Input type

Input type 1000 Type of input

1: Always use override
2: Analog input
3: PT100 input
4: HART
5: Custom input
6: Smart flow meter (meter temperature only)
If option 5: Custom is selected then the value [°C]
that is written to the corresponding custom input
tag (e.g. Meter temperature custom value) will be
used. Use this option if the temperature value is
sent to the flow computer over a Modbus
communications link or if you want to apply user-
defined calculations to the temperature.

Analog / PT100 input settings

These settings are only applicable if the **temperature input type** is 'Analog input' or 'PT100 input', or if the **temperature input type** is 'HART' with **HART to analog fallback** enabled.

Analog / PT100 input module	1000	Number of the flow module to which the signal is physically connected. -1: Local module means the module of the meter
Analog / PT100 input channel	1000	run itself Number of the analog / PT100 input channel on the selected module to which the signal is physically connected.

HART settings

These settings are only applicable if the **temperature input type** is 'HART'.

HART internal device nr.	1000	Internal device nr. of the HART transmitter as assigned in the configuration software (Flow- Xpress: 'Ports & Devices')
HART variable	1000	Determines which of the 4 HART variables provided by the HART transmitter is used. Select the variable that represents the temperature . Usually this is the 1st (primary) variable.
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead the value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. If both the HART and the mA signal fail the value corresponding with the Fallback type will be used.
		If multiple HART transmitters are installed within a loop, then the HART to
		analog fallback option can't be used.

Smart meter settings

Only applicable if the temperature input type is 'Smart meter'.

device nr. & Devices')

Determines what to do if the input fails. 1: Last good value Keep on using the last value that was obtained when the input was still healthy. 2: Fallback value Use the value as specified by parameter

		'Fallback value' The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer.	
		3: Override value Use the value as specified by parameter 'Override value'	
Fallback value 100	00	Only used if Fallback type is 'Fallback value'.	
		Represents the temperature [°C] that is used when the input fails.	
Input frozen alarm			
Input frozen time 1000		Maximum time [s] which the input value is	

Input frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Not applicable for input type 'always use override'.
		Enter 0 to disable this functionality.

Temperature transmitter selection

Only applicable in case of dual meter temperature transmitters

Display \rightarrow Configuration, Run <x>, Temperature, Meter temperature

with <x> the module number of the meter run

Transmitter selection

Dual	1000	Determines how the in-use meter temperature is
transmitter		calculated from both transmitter values
mode		1: Auto transmitter A
		Transmitter value A is used when it is healthy and not out of service. Transmitter value B is used
		when transmitter A fails, or is out of service, while
		transmitter B is healthy and not out of service. If
		both transmitters fail or are out of service, the
		value according to the Fallback type is used.
		2: Auto transmitter B
		Transmitter value B is used when it is healthy and
		not out of service. Transmitter value A is used
		when transmitter B fails, or is out of service, while
		transmitter A is healthy and not out of service. If
		both transmitters fail or are out of service, the
		value according to the Fallback type is used.
		3: Average
		If both transmitters are healthy and not out of
		service, the average of both values is used. If one
		transmitter fails or is out of service, while the
		other is healthy and not out of service, the other
		transmitter is used. If both transmitters fail or are
		out of service, the value according to the Fallback
		type is used.
		type is used.

Meter Temperature deviation limit [°C]. 1000 temperature If the deviation between two temperature deviation limit transmitters exceeds this limit, then a temperature deviation alarm is generated. Temperature 1000 Determines what happens in case of a deviation fallback temperature deviation alarm. mode 0: None A deviation alarm is given, but the original input value remains in use. 1: Transmitter failure The deviation alarm is treated as a transmitter failure: depending on the fallback type either the last good, fallback or override value is used. 2: Use transmitter A value

3: Use transmitter B value

Pressure setup

Pressure transmitters

The flow computer supports the following pressure transmitter inputs:

For each run:

- One or two meter pressure transmitters (A and B)
- One density pressure transmitter

For the station:

One density pressure transmitter

Auxiliary inputs:

Two auxiliary pressure transmitters (1 and 2)

Meter pressure transmitters

Either a single pressure transmitter or dual pressure transmitters can be used. In case of dual transmitters there are several schemes for determining the in-use meter pressure (duty / standby or average) and a deviation check is done between the two pressure values.

Density pressure transmitters

Density pressure transmitters are used in combination with an observed (live) density (e.g. a densitometer) and measure the pressure at the point where the density is measured.

In case of an observed (live) density on a run, a density pressure transmitter is optional. If no density pressure transmitter is configured, the flow computer uses the meter pressure.

In case of a station observed (live) density, the use of a density pressure transmitter is obligatory.

Auxiliary pressure transmitters

Two auxiliary pressure transmitters can be defined (e.g. a station pressure). These are for informational purposes only, or can be used in custom calculations.

Display \rightarrow Configuration, Run <x>, Pressure (, Meter pressure A/B)

Display \rightarrow Configuration, Run <x>, Pressure, Density pressure

Display \rightarrow Configuration, Station, Pressure

Display \rightarrow Configuration, Proving (, Prover A/B), Pressure (, Prover inlet pressure)

Display \rightarrow Configuration, Proving (, Prover A/B), Pressure (, Prover outlet pressure)

Display \rightarrow Configuration, Proving (, Prover A/B), Pressure, Prover rod pressure

Display \rightarrow Configuration, Proving (, Prover A/B), Pressure, Prover density pressure

Display \rightarrow Configuration, Auxiliary inputs, Auxiliary pressure 1/2

with <x> the module number of the meter run

For each pressure transmitter the following settings are available:

Input type

Input type	1000	Type of input
		1: Always use override
		2: Analog input
		4: HART
		5: Custom input
		6: Smart flow meter (meter pressure only)
		If option 5: Custom is selected then the value ([bara] or [barg], depending on the selected pressure input units) that is written to the corresponding custom input tag (e.g. Meter pressure custom value) will be used. Use this option if the pressure value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the pressure.
Input units	1000	1: Absolute The input value is an absolute pressure
		2: Gauge The input value is a gauge pressure (i.e. relative to the atmospheric pressure)

Analog input settings

These settings are only applicable if the **pressure input type** is 'Analog input', or if the **pressure input type** is 'HART' with **HART to analog fallback** enabled.

input module	1000	Number of the flow module to which the signal is physically connected.
		-1: Local module means the module of the meter run itself
Analog input channel	1000	Number of the analog input channel on the selected module to which the signal is physically connected.

HART settings

These settings are only applicable if the **pressure input type** is 'HART'.

HART internal device nr.	1000	Internal device nr. of the HART transmitter as assigned in the configuration software (Flow-
		Xpress: 'Ports & Devices')
HART	1000	Determines which of the 4 HART variables
variable		provided by the HART transmitter is used. Select
		the variable that represents the pressure. Usually
		this is the 1st (primary) variable.
HART to	1000	Only applies for a single HART transmitter, where
analog		the 4-20 mA signal is provided together with the
fallback		HART signal.
		0: Disabled
		The 4-20 mA signal will not be used when the
		HART signal fails. Instead the value
		corresponding with the 'Fallback type' will be used.
		1: Enabled
		 Xpress: 'Ports & Devices') Determines which of the 4 HART variables provided by the HART transmitter is used. Select the variable that represents the pressure. Usually this is the 1st (primary) variable. Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal. O: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead the value corresponding with the 'Fallback type' will be used. 1: Enabled The 4-20 mA signal will be used when the HART signal fails. If both the HART and the mA signal fail the value corresponding with the Fallback type will be used.
		signal fails. If both the HART and the mA signal
		If multiple HART transmitters are installed within
		•

Smart meter settings

Only applicable if the pressure input type is 'Smart meter'.

		Transmitter	deviati	on
Smart meter 1000 internal device nr.	Device nr. of the smart meter as assigned in the configuration software (Flow-Xpress, section 'Ports & Devices')	Meter pressure deviation limit	1000	Pressure deviation limit [bar]. If the deviation between two pressure transmitters exceeds this limit, then a pressure deviation alarm is generated.
Fail fallback		Pressure deviation	1000	Determines what happens in case of a pressure deviation alarm.
Fallback type 1000	Determines what to do if the input fails. 1: Last good value Keep on using the last value that was obtained when the input was still healthy. 2: Fallback value Use the value as specified by parameter 'Fallback value' The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer. 3: Override value Use the value as specified by parameter 'Override value'	fallback mode		0: None A deviation alarm is given, but the original input value remains in use. 1: Transmitter failure The deviation alarm is treated as a transmitter failure: depending on the fallback type either the last good, fallback or override value is used 2: Use transmitter A value 3: Use transmitter B value
Fallback value 1000	Only used if Fallback type is 'Fallback value'. Represents the pressure ([bar(a)] or [bar(g)], depending on the selected input units) that is used when the input fails.			
Input frozen aları Input frozen time 10	n 000 Maximum time [s] which the input value is allowed to remain unchanged.			
	If the input value hasn't changed during this			

Pressure transmitter selection

Only applicable in case of dual meter pressure transmitters

override'.

Display \rightarrow Configuration, Run <x>, Pressure, Meter pressure

time, an 'input frozen' alarm is given. Not applicable for **input type** 'always use

Enter 0 to disable this functionality.

with <x> the module number of the meter run

Transmitter selection

Dual transmitter mode	1000	Determines how the in-use meter pressure is calculated from both transmitter values
mode		1: Auto transmitter A
		Transmitter Value A is used when it is healthy and not out of service. Transmitter value B is used when transmitter A fails, or is out of service, while transmitter B is healthy and not out of service. If both transmitters fail or are out of service, the value according to the Fallback type is used.
		2: Auto transmitter B
		Transmitter value B is used when it is healthy and not out of service. Transmitter value A is used when transmitter B fails, or is out of service, while transmitter A is healthy and not out of service. If both transmitters fail or are out of service, the value according to the Fallback type is used.
		3: Average If both transmitters are healthy and not out of service, the average of both values is used. If one transmitter fails or is out of service, while the other is healthy and not out of service, the other transmitter is used. If both
		transmitters fail or are out of service, the value according to the Fallback type is used.

Density setup

The flow computer supports the following density inputs:

For each run:

- One or two densitometers or one analog / HART / smart meter observed density input
- One or two specific gravity transducers or one analog / HART specific gravity input

For the station:

- One or two densitometers or one analog / HART observed • density input
- One or two specific gravity transducers or one analog / HART specific gravity input

If the flow computer is used for 2 or more meter runs, the density input can be either a common input for all the meter runs or a separate input for each meter run. E.g. a densitometer can be installed in the header of the metering station in which case one and the same density measurement is used for all meter runs, or separate densitometers can be installed in each run.

Whether the density setup is on station or meter run level is controlled by parameter Station density, which is accessible through display Configuration, Overall setup, Common settings.

See paragraph 'common settings' for more details.

Display \rightarrow Configuration, Run <x>, Density (, Density setup)

Display \rightarrow Configuration, Station, Density (, Density setup)

with <x> the module number of the meter run

					station now compater.
Observed	1000	Defines how the observed density (density at	Base density input type	1000	Defines how the base density (density at reference conditions) is determined
density input type		densitometer conditions) is determined O: None There is no observed density input 1: Always use override Use this option if a fixed value is used for the observed density 2: Analog input 4: HART/Modbus			 Always use override Use this option if a fixed value is used for base density Custom input The value [kg/sm3] that is written to tag Base density custom value will be used a the base density. Use this option if the b density value is sent to the flow compute
		5: Custom input The value [kg/m3] that is written to tag Observed density custom value will be used as			over a Modbus communications link or if want to apply user-defined calculations t the base density value.
		the observed density. Use this option if the observed density value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the observed density value.			6: Gas composition (molar mass) The base density is calculated from the n mass (which in turn is calculated from th gas composition using the molar mass calculation method).
		6: One densitometer The observed density is read from a single			Refer to chapter Calculations for more information about the actual calculations
		densitometer. 7: Two densitometers The observed density is provided by two			 Observed density The base density is calculated from the observed density value.

		(redundant) densitometers. The observed
		density of the selected densitometer is used.
		8: Smart flow meter
		The observed density [kg/m3] is read from
		the smart (Coriolis) flow meter. Only
		applicable for run observed density input.
		In case of a remote run with Station product
		enabled the observed density is read from the
		station flow computer.
		If a station observed density input other than 'none' is colorted then also a station density
		'none' is selected, then also a station density temperature input and a density pressure
		input have to be configured.
		In case of a run observed density input the use
		of separate density temperature and density
		pressure inputs are optional. See paragraphs
		'Temperature setup' and 'pressure setup' for
		more information.
Density	1000	Type of input for the density temperature
temperature		(temperature at the density meter).
input type		0: None
		1: Always use override
		2: Analog input
		3: PT100 input
		4: HART
		5: Custom input
		If this option is selected then the value [°C]
		that is written to tag Density temperature
		custom value is used. Use this option if the
		temperature value is sent to the flow
		computer over a Modbus communications
		link or if you want to apply user-defined
		calculations to the density temperature.
		In case of a remote run FC with Station product
		enabled the density temperature is read from
Density processo	1000	the station flow computer.
Density pressure	1000	Type of input for the density pressure (pressure
input type		at the density meter).
		0: None
		1: Always use override 2: Analog input
		4: HART
		5: Custom input
		If this option is selected then the value [bar]
		that is written to tag Density pressure
		custom value is used. Use this option if the
		pressure value is sent to the flow computer
		over a Modbus communications link or if you
		want to apply user-defined calculations to
		the density pressure.
		In case of a remote run FC with Station product
		enabled the density pressure is read from the
		station flow computer.
Base density	1000	Defines how the base density (density at
input type		reference conditions) is determined
		1: Always use override
		Use this option if a fixed value is used for the
		base density
		5: Custom input
		The value [kg/sm3] that is written to tag
		Base density custom value will be used as
		the base density. Use this option if the base
		density value is sent to the flow computer
		over a Modbus communications link or if you
		want to apply user-defined calculations to
		the base density value.
		6: Gas composition (molar mass)
		The base density is calculated from the molar
		mass (which in turn is calculated from the
		gas composition using the molar mass
		calculation method). Refer to chapter Calculations for more
		Refer to chapter Calculations for more
		-

		Refer to chapter Calculations for more information about the actual calculations 8: Specific gravity The base density is calculated from the specific gravity value Refer to chapter Calculations for more information about the actual calculations 12: Gas chromatograph Uses the base density that is read from the gas chromatograph				 5: Custom The value [-] that is written to tag Relative density custom value will be used. Use this option if the specific relative density is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the relative density value. 13: Gas chromatograph Uses the relative density that is read from the
		13: Relative density The base density is calculated from the relative density value Refer to chapter Calculations for more				gas chromatograph In case of a remote run FC with Station product enabled the relative density is read from the station flow computer.
		information about the actual calculations 14: Base compressibility method The base density is calculated by the same method that has been configured to calculate the base compressibility. This option is only valid in combination with one of the following base compressibility methods:	Meter dens calculatior method	-	1000	Defines how the meter density (density at line conditions) is calculated 1: Base density The meter density is calculated from the base density. 2: Observed density The meter density is calculated from the observed density.
		AGA8 (detailed) ISO6976 – 1983 ISO6976 – 1995 GPA2172 AGA 8 Part 2 (GERG 2008) GSSSD MR113 2003 The base compressibility method setting can be found on the display: Gas properties,				3: Down- to upstream correction Calculates the (upstream) meter density according to ISO5167. Only applicable to orifices, venturi and V-cone devices, venturi nozzles, long radius nozzles and ISA1932 nozzles with a density meter at the recovered pressure position. 4: Custom input The value [kg/m3] that is written to tag
		Calculation setup. In case of a remote run FC with Station product enabled the base density is read from the station flow computer.				Meter density custom value will be used as the meter density. Use this option if the meter density value is sent to the flow computer over a Modbus communications
Specific gravity input type	1000	Defines how the specific gravity (SG at reference conditions) is determined O: Calculated There is no specific gravity input. Specific gravity is calculated from base density 1: Always use override Use this option if a fixed value is used for the specific gravity 2: Analog input				link or if you want to apply user-defined calculations to the meter density value. 5: Compressibility method The base density is calculated by the same method that has been configured to calculate the compressibility. This option is only valid in combination with one of the following compressibility methods:
		 4: HART 5: Custom The value [-] that is written to tag Specific gravity custom value will be used as the specific gravity. Use this option if the specific gravity value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the specific gravity value. 				AGA8 (detailed) AGA 8 Part 2 (GERG 2008) GSSSD MR113 2003 The compressibility method setting can be found on the display: Gas properties, Calculation setup.
		 6: One SG transducer The specific gravity is read from a single SG transducer. 7: Two SG transducers The specific gravity is provided by two (redundant) SG transducers. The specific gravity of the selected SG transducer is used. 13: Gas chromatograph Uses the specific gravity that is read from the gas chromatograph In case of a remote run FC with Station product 	available type 'gas 'base deu the mola	densit , the f s comp nsity'. r mas	tometer low con position This me s, which	ailure of the observed density source (e.g. r) while a gas composition source is nputer switches over to base density input n' and meter density calculation method eans the base density is calculated from n in turn is calculated from the gas e selected molar mass calculation method.
Relative density input type	1000	enabled the specific gravity is read from the station flow computer. Defines how relative density (at reference conditions) is determined 0: Calculated There is no relative density input. Relative density is calculated from base density 1: Always use override			-	ole combination of settings is chosen, then nfiguration error' alarm is shown.
		Use this option if a fixed value is used for the relative density				

Observed density

This display is only available if **Observed density input type** is set to Analog input', 'HART' or 'Smart flow meter'.

Display → Configuration, Run <x>, Density, Observed density

Display \rightarrow Configuration, Station, Density, Observed density

with <x> the module number of the meter run

Analog input settings

These settings are only applicable if the **observed density input type** is 'Analog input', or if the **observed density input type** is 'HART' with **HART to analog fallback** enabled.

Analog input module	1000	Number of the flow module to which the signal is physically connected.
		-1: Local module means the module of the meter run itself
		Deviation limit [kg/m3] for the deviation check between the observed density and the density at the density meter conditions as calculated according to AGA-8.
		If the deviation is larger than this limit, then an 'Observed / AGA-8 density deviation limit exceeded' alarm is generated.
Analog input channel	1000	Number of the analog input channel on the selected module to which the signal is physically connected.

HART settings

These settings are only applicable if the **observed density input type** is 'HART'.

HART internal device nr.	1000	Internal device nr. of the HART transmitter as assigned in the configuration software (Flow- Xpress: 'Ports & Devices')
HART variable	1000	Determines which of the 4 HART variables provided by the HART transmitter is used. Select the variable that represents the observed density . Usually this is the 1st (primary) variable.
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead the value corresponding with the 'Fallback type' will be used.
		1: Enabled The 4-20 mA signal will be used when the HART signal fails. If both the HART and the mA signal fail the value corresponding with the Fallback type will be used.
		If multiple HART transmitters are installed within a loop, then the HART to analog fallback option can't be used.

Smart meter settings

These settings are only applicable if the **observed density input type** is 'Smart meter'.

HART	1000	Internal device nr. of the smart meter as assigned in
internal		the configuration software (Flow-Xpress: 'Ports &
device nr.		Devices')

Fail fallback

If the observed density input fails while a gas composition is available, the in-use **base density** (which is normally calculated from the observed density) switches over to the base density value calculated from the gas composition and a 'Density fallback to calculated value' alarm is generated. If a gas composition is not available, the base density will use the value that is specified at the **Base density fallback type** (last good value, fallback value or override value). See paragraph 'Base density' for more details.

Input frozen alarm

Input frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Not applicable for input type 'always use override'.
		Enter 0 to disable this functionality.

Deviation limit

These settings are only applicable if the **observed density input type** is unequal to 'None'.

Observed / AGA-8 density deviation	1000	Deviation limit [kg/m3] for the deviation check between the observed density and the density at the density meter conditions as calculated according to AGA-8.
limit		If the deviation is larger than this limit, then an 'Observed / AGA-8 density deviation limit exceeded' alarm is generated.

Densitometer setup

This display is only available if **Observed density input type** is set to 'One densitometer' or 'Two densitometers'.

Display \rightarrow Configuration, Run <x>, Density, Densitometer, Densitometer setup

Display \rightarrow Configuration, Station, Density, Densitometer, Densitometer setup

with <x> the module number of the meter run

Densitometer A/B	1000	Densitometer A/B device type.
type		1: Solartron
		2: Sarasota
		3: UGC
Densitometer A/B	1000	Densitometer A/B units.
units		1: kg/m3
		2: g/cc
		3: lb/ft3

Time period A/B

Time period settings of densitometer A /B. Time period B settings are only applicable if **Observed density input type** is set to 'Two densitometers'.

Input	1000	Flow-X module to which the densitometer A/B signal is
module		connected to.
Input number	1000	Defines the time period input of the Flow-X module for densitometer A/B.

Each module has a maximum of 4 time period inputs. A time period input can be connected to a physical digital channel on display: IO, Module <x>, Configuration, Digital IO assign. See paragraph 'Digital IO assign' for more details.

Deviation limits				
Observed / AGA- 8 density deviation limit	1000	Deviation limit [kg/m3] for the deviation check between the observed density and the density at the density meter conditions as calculated according to AGA-8.		
		If the deviation is larger than this limit, then an 'Observed / AGA-8 density deviation limit exceeded' alarm is generated.		
Densitometer A/B deviation limit	1000	Only applicable if Observed density input type is set to 'Two densitometers'. If the deviation between the density from both		
iiiiii		densitometers exceeds this limit $[kg/m3]$, then a 'Densitometer A/B deviation limit exceeded' alarm is generated.		

Density correction factor

Densitometer	1000	Nominal density correction factor (DCF) for
A/B nominal		densitometer A/B. The density as measured by
correction		densitometer A/B is multiplied by this factor.

Input frozen alarm

Input frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Enter 0 to disable this functionality.

Solartron / Sarasota / UGC densitometer setup

The densitometer constants are device-specific and can be defined on the following display.

Display → Configuration, Run <x>, Density, Densitometer, Densitometer A / B constants

Display \rightarrow Configuration, Station, Density, Densitometer, Densitometer A / B constants

with <x> the module number of the meter run

All densitometer constants are at security level 1000. Refer to section calculations for the meaning of these settings.

Specific gravity

The following settings apply if the **Specific gravity input type** is set to 'Analog input', 'HART' or 'Custom input'.

Display \rightarrow Configuration, Run <x>, Density, Specific gravity

 $\label{eq:Display} \mathsf{Display} \rightarrow \mathsf{Configuration}, \mathsf{Station}, \mathsf{Density}, \mathsf{Specific} \ \mathsf{gravity}$

with <x> the module number of the meter run

Analog input settings

These settings are only applicable if the **Specific gravity input type** is set to 'Analog input', or if the **Specific gravity input type** is 'HART / Modbus' with **HART to analog fallback** enabled.

Analog input module	1000	Number of the flow module to which the signal is physically connected. -1: Local module means the module of the meter run itself
Analog input channel	1000	Number of the analog input channel on the selected module to which the signal is physically connected.

HART settings

These settings are only applicable if the **specific gravity input type** is 'HART'.

HART internal	1000	Internal device nr. of the HART transmitter as
	1000	
device nr.		assigned in the configuration software (Flow-
		Xpress: 'Ports & Devices')
HART variable	1000	Determines which of the 4 HART variables
		provided by the HART transmitter is used. Select
		the variable that represents the specific gravity.
		Usually this is the 1st (primary) variable.
HART to	1000	Only applies for a single HART transmitter, where
analog	1000	
5		the 4-20 mA signal is provided together with the
fallback		HART signal.
		0: Disabled
		The 4-20 mA signal will not be used when the
		HART signal fails.
		Instead the value corresponding with the
		'Fallback type' will be used.
		1: Enabled
		The 4-20 mA signal will be used when the HART
		signal fails. When both the HART and the mA
		signal fail the value corresponding with the
		'Fallback type' will be used.
		If multiple HART transmitters are installed within
		a loop, then the HART to analog fallback option
		can't be used.

Fail fallback

Fallback	1000	Determines what to do in case the input fails.		
type		1: Last good value		
		Keep on using the last value that was obtained when the input was still healthy.		
		2: Fallback value		
		Use the value as specified by parameter 'Fallback value'		
		The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer.		
		3: Override value		
		Use the value as specified by parameter 'Override value'		
Fallback	1000	Only used if Fallback type is 'Fallback value'.		
		Represents the specific gravity [-] to be used when the		
value		input fails.		
Input fro		arm		
Input fro		·		
Input froze		arm 1000 Maximum time [s] which the input value is		

Enter 0 to disable this functionality.

SG transducer setup

The following display is only available if **Specific gravity input type** is set to 'One SG transducer' or 'Two SG transducers'

Display \rightarrow Configuration, Run <x>, Density, SG transducer(s)

Display \rightarrow Configuration, Station, Density, SG transducer(s)

with <x> the module number of the meter run

SG transducer select mode	500	Only applicable if Specific gravity input type is set to 'Two SG transducers'.
		SG transducer selection mode.
		1: Auto-A
		SG transducer B is only used when SG transducer
		A fails and SG transducer B is healthy. SG
		transducer A is used in all other cases.
		2: Auto-B
		SG transducer A is only used when SG transducer
		B fails and SG transducer A is healthy. SG
		transducer B is used in all other cases.
		3: Manual-A
		Always use SG transducer A irrespective of its
		failure status
		4: Manual-B
		Always use SG transducer B irrespective of its
		failure status

SG transducer A/B

SG transducer and time period settings of SG transducer A/B. B settings are only applicable if **Specific gravity input type** is set to 'Two SG transducers.

SG transducer A/B K0	1000	SG transducer A/B constant K0 Refer to section calculations for more information on this setting
SG transducer A/B K2	1000	SG transducer A/B constant K2 Refer to section calculations for more information on this setting
Time period A/B input module	1000	Flow-X module to which the SG transducer A/B signal is connected to.
Time period A/B input channel	1000	Defines the time period input of the selected Flow-X module for SG transducer A/B. Each module has a maximum of 4 time period inputs. A time period input can be connected to a physical digital channel on display: IO, Module <x>, Configuration, Digital IO assign. See paragraph 'Digital IO assign' for more details.</x>

Fail fallback

Specific gravity fallback type	1000	Determines what to do if the SG transducer fails (in case of one SG transducer) or if both SG transducers fail (in case of two SG transducers). 1: Last good value Keep on using the last value that was obtained when the input was still healthy. 2: Fallback value Use the value as specified by parameter 'Specific gravity Fallback value' The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer. 3: Override value Use the value as specified by parameter 'Specific gravity override value'
Specific gravity fallback value	1000	Only used if Fallback type is 'Fallback value'. Represents the specific gravity [-] to be used when the input fails.

Input	frozen	alarm
-------	--------	-------

Input frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Enter 0 to disable this functionality.

Deviation limit

SG transducer A/B deviation	1000	Only applicable in case two SG transducers are configured.
limit		If the deviation between the specific gravity
		from both SG transducers exceeds this limit [-], then a 'SG transducer A/B deviation limit
		exceeded' alarm is generated.

Relative density

The following settings apply if the **Relative density input type** is set to 'Custom input' or 'Gas chromatograph'.

 \mathbb{X}

Display \rightarrow Configuration, Run <x>, Density, Relative density

Display \rightarrow Configuration, Station, Density, Relative density

with <x> the module number of the meter run

Fail fallback

Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value
		Keep on using the last value that was obtained when the input was still healthy.
		2: Fallback value
		Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used if Fallback type is 'Fallback value'.
		Represents the value to be used when the input fails.

Input frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Only applicable in case of a life (not calculated) or custom input value. Not applicable for input type 'always use override'.
		Enter 0 to disable this functionality.

Base density

The following settings are applicable if the **Base density input type** is set to 'Custom input' or 'Gas chromatograph' or in case of a 'remote run' flow computer with **Station product** enabled.

Display \rightarrow Configuration, Run <x>, Density, Base density

 $\mbox{Display} \rightarrow \mbox{Configuration},$ Station, Density, Base density

with <x> the module number of the meter run

Fallback type	1000	Determines what to do in case the input / communication to the 'remote station' flow computer fails.
		1: Last good value
		Keep on using the last value that was obtained when the input was still healthy.
		2: Fallback value
		Use the value as specified by parameter
		'Fallback value'
		The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer.
		3: Override value
		Use the value as specified by parameter 'Override value'
Fallback value	1000	Only used if Fallback type is 'Fallback value'.
		Represents the value to be used when the input fails.

Input frozen alarm

Input frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Only applicable in case of a life (not calculated) or custom input value. Not applicable for input type 'always use override'.
		Enter 0 to disable this functionality.

Gas properties

Gas composition

The flow computer supports the following Gas Composition inputs:

For each run:

• One or two Gas Chromatographs

For the station:

• One or two Gas Chromatographs

If the flow computer is used for 2 or more meter runs, the gas composition input can be either a common input for all the meter runs or a separate input for each meter run. E.g. a GC can be installed in the header of the metering station in which case one and the same gas composition is used for all meter runs, or separate GC's can be installed in each run.

Whether the gas composition configuration is on station or meter run level is controlled by parameter **Station product**, which is accessible through display Configuration, Overall setup, Common settings.

See paragraph 'common settings' for more details.

Display \rightarrow Configuration, Run <x>, Gas properties, Gas Composition

$$\label{eq:configuration} \begin{split} \text{Display} \rightarrow \text{Configuration}, \text{Station}, \text{Gas properties}, \text{Gas} \\ \text{Composition} \end{split}$$

with <x> the module number of the meter run

Gas composition input type	1000	Defines how the gas composition is provided to the flow computer
		0: None
		No gas composition is being used
		1: Always use override composition
		Always uses the override gas composition,
		which is manually entered through the operator display
		2: One gas chromatograph
		The gas composition is provided by a single gas chromatograph (GC). The composition may be overruled by the override composition
		3: Two gas chromatographs
		The gas composition is provided by two
		(redundant) gas chromatographs. The
		composition of the selected GC will be used
		for the calculations. The composition may
		be overruled by the override composition
		4: Custom composition
		The component values that are written to
		the custom composition tags will be used.
		Use this option if the composition is sent to
		the flow computer over a Modbus
		communications link by an external system
		or if you want to apply user-defined
		calculations to set the component values.
		In case of a remote run FC with Station

		product enabled the gas composition is read from the station flow computer.
Composition	1000	Determines what to do when the
Composition fallback type	1000	(communication with the) GC is in failure (in case of one GC) or when the (communication with) both GC's are in failure (in case of two GC's)
		1: Use last received Keep using the last received composition before the failure
		3: Use override composition Use the override composition
Composition fail on limit alarm	1000	Determines what to do when one or more components, or the sum of components, are out of limits.
		0: Disabled The live gas composition is used, even in case of a composition limit alarm.
		1: Enabled In case of a composition limit alarm, the flow computer switches to the other GC (if available). If a second GC is not available, or if the second GC also has an alarm, the flow computer switches to the last received good composition, or the override composition is used (depending on the fallback type).
Composition normalization	1000	Determines whether or not the gas composition is normalized (scaled to 100%) if the sum of components doesn't add up to 100%, which means that all component values are raised or lowered proportionally, so that the sum of components counts up to 100%
		If AGA8, ISO6976, GPA2172, GERG2008 or GSSSD-MR113 is used for compressibility, molar mass or heating value calculation, then gas composition normalization is enabled automatically.
		0: Disabled
neo-Pentane mode	1000	1: Enabled Defines what has to happen to the neo- Pentane component. neo-C5 is not supported by AGA8 and GPA-2172, therefore it has to be added to i-C5 or n-C5, or it can be neglected.
		1: Add to i-C5 The neo-Pentane component is added to i- Pentane
		2: Add to n-C5 The neo-Pentane component is added to n- Pentane
		3: Neglect The neo-Pentane component is not taken into account

Live composition split

These settings apply to the live gas composition received from the **gas chromatograph** or the **custom composition**, <u>not</u> to the override composition.

Live composition 1000	Controls the split up of the C6+, C7+, C8+ or
Cx+ split mode	C9+ component of the live composition
	1: Not used
	The values for C6, C7, C8, C9 and C10 will be
	used as received from the GC
	2: C6+ split
	The C6+ component is split into C6, C7, C8,
	C9 and C10 according to the defined split
	percentages. The values of C6, C7, C8, C9
	and C10 as received from the GC are
	neglected.
	3: C7+ split
	The C7+ component is split into C7, C8, C9
	and C10 according to the defined split
	percentages. The value of C6 is used as

		received from the GC. The values of C7, C8, C9 and C10 as received from the GC are neglected.
		4: C8+ split
		The C8+ component is split into C8, C9 and C10 according to the defined split percentages. The values of C6 and C7 are used as received from the GC. The values of C8, C9 and C10 as received from the GC are neglected.
		5: C9+ split
		The C9+ component is split into C9 and C10 according to the defined split percentages. The values of C6, C7 and C8 are used as received from the GC. The values of C9 and C10 as received from the GC are neglected.
Live composition	1000	The C6 split percentage [%] for the live
C6 split %		composition
-		Only applicable to split mode C6+
Live composition C7 split %	1000	The C7 split percentage [%] for the live composition
		Only applicable to split modes C6+ and C7+
Live composition C8 split %	1000	The C8 split percentage [%] for the live composition
		Only applicable to split modes C6+, C7+ and C8+
Live composition C9 split %	1000	The C9 split percentage [%] for the live composition
		Only applicable to split modes C6+, C7+, C8+ and C9+
Live composition C10 split %	1000	The C10 split percentage [%] for the live composition
		Applicable to all split modes

		value of C10 from the override composition is neglected.
		The values for C6, C7, C8, C9 and C10 will be used as specified by the override composition
Override composition	1000	The C6 split percentage [%] for the override composition
C6 split %		Only applicable to split mode C6+
Override composition	1000	The C7 split percentage [%] for the override composition
C7 split %		Only applicable to split modes C6+ and C7+
Override composition	1000	The C8 split percentage [%] for the override composition
C8 split %		Only applicable to split modes C6+, C7+ and C8+
Override composition	1000	The C9 split percentage [%] for the override composition
C9 split %		Only applicable to split modes C6+, C7+, C8+ and C9+
Override composition	1000	The C10 split percentage [%] for the override composition
C10 split %		Applicable to all split modes

The split percentages must add up to 100%

Analysis delayed alarm

GC analysis delayed alarm checking	1000	Enables or disables delay checking on the gas composition. Raises an alarm 'Gas composition analysis delay' if no new analysis is received within a configurable timeout time. In case of a delay alarm the flow computer switches over to the other GC (if available) or to the 'last received' or override composition (depending on the composition fallback type). O: Disabled 1: Enabled Can also be used with a 'custom composition' that is written from a DCS or other system.
GC analysis timeout time	1000	Timeout time [min] for the gas composition delay alarm.

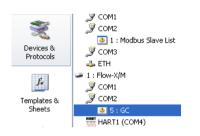
Non-hydrocarbon components

For each of the non-hydrocarbon components: N2, CO2, H2O, H2S, H2, CO, O2, He and Ar, the following settings are available:

<> fraction	1000	Defines whether the fraction [mole %] is read as
input		part of the gas composition, or from another
-		source.
		0: Gas composition
		The component is read as part of the gas
		composition (GC or custom composition).
		1: Fixed value
		A fixed value is used for the component
		2: Custom input
		The value [mole %] that is written to
		component's custom value tag will be used.
		3: Auxiliary input 1
		The component value [mole %] is read through
		auxiliary input 1. This option can be used to
		read the component value from an analog or
		HART transmitter.
		4: Auxiliary input 2
		The component value [mole %] is read through
		auxiliary input 2. This option can be used to
		read the component value from an analog or
	1000	HART transmitter.
<> fraction	1000	Fixed component value [mole %].
fixed value		Only applicable if the fraction input type is set to
		'Fixed value'.

The split percentages must add up to 100%

Override composition split


These settings apply to the **override composition**, <u>not</u> to the live gas composition received from the gas chromatograph or the custom composition.

Override	1000	Controls the split up of the C6+, C7+, C8+ or
composition Cx+		C9+ component from the override composition
split mode		1: Not used
		2: C6+ split
		The C6(+) component from the override
		composition is split into C6, C7, C8, C9 and
		C10 according to the defined split
		percentages. The values of C7, C8, C9 and
		C10 from the override composition are
		neglected.
		3: C7+ split
		The C7(+) component from the override
		composition is split into C7, C8, C9 and C10
		according to the defined split percentages.
		The value of C6 is used as specified in the override composition. The values of C8, C9
		and C10 from the override composition are
		neglected
		4: C8+ split
		The C8(+) component is split into C8, C9 and
		C10 according to the defined split
		percentages. The values of C6 and C7 are
		used as specified in the override
		composition. The values of C9 and C10 from
		the override composition are neglected.
		5: C9+ split
		The C9(+) component is split into C9 and C10
		according to the defined split percentages.
		The values of C6, C7 and C8 are used as
		specified in the override composition. The

Gas chromatograph(s)

Whether the gas chromatograph configuration is on station or meter run level is controlled by parameter Station product, which is accessible through display Configuration, Overall setup, Common settings.

The gas composition may be obtained from 1 or 2 gas chromatographs. The gas chromatograph(s) must be defined as a communications device in Flow-Xpress, section 'Ports & Devices'. Refer to manual II.A Operation and configuration for instructions on the definition of communication devices.

In the example above the GC has device nr. '5'.

The following display is only available if 'Gas composition input type' is set to 'One gas chromatograph' or 'Two gas chromatographs'.

Display \rightarrow Configuration, Run <x>, Gas properties, Gas chromatograph(s)

Display \rightarrow Configuration, Station, Gas properties, Gas chromatograph(s)

with <x> the module number of the meter run

GC selection mode	500	Only applicable if 'Gas composition input type' is set to Two Gas Chromatographs'
		Controls the selection between the 2 GC's. The gas composition of the selected GC is used for the calculations. The selection is based on a GC failure, which occurs when:
		 a GC does not communicate (properly) to the flow computer a GC indicates a measurement problem. a GC is not in normal operation, but e.g. in maintenance or in calibration a GC analysis is delayed a GC analysis causes a composition limit alarm
		Note: The actual logic to determine a measurement problem or the operational mode of a GC may be different for each type of GC.
		1: Auto-A GC B is only selected when it has no failure, while GC A has a failure. GC A is selected in all other cases.
		2: Auto-B GC A is only selected when it has no failure,
		while GC B has a failure. GC B is selected in all other cases.

		3: Manual-A GC A is always selected, independent of any failure
		4: Manual-B GC B is always selected, independent of any failure
GC analysis delay time	1000	Delay time [s] for reading data from the GC('s). This is to make sure that all data has been updated (composition, stream number, calibration flag) before the data is accepted.

Gas Chromatograph A / B

Settings of Gas Chromatograph A / B. Gas Chromatograph B settings are only available if Gas composition input type is set to 'Two gas chromatographs'.

GC A/B internal device nr.	1000	Internal device nr. of the gas chromatograph as assigned in the configuration software (Flow-Xpress: 'Ports & Devices')
GC A/B multi- stream	1000	Only applicable to GC's that support multi-stream handling. If enabled, the gas composition is only accepted if the actual stream number from the GC equals the required stream number . 0: Disabled 1: Enabled
GC A/B required stream number	1000	Only applicable if multi-stream is enabled. Stream number on the GC to be read.

Calculation setup

Whether the calculation setup is on station or meter run level is controlled by parameter Station product, which is accessible through display Configuration, Overall setup, Common settings.

See paragraph 'common settings' for more details.

Display \rightarrow Configuration, Run <x>, Gas properties, Calculation setup

Display \rightarrow Configuration, Station, Gas properties, Calculation setup

with <x> the module number of the meter run

Compressibility

Compressibility	1000	Method to calculate the compressibility factor
calculation method	1000	Z at the meter temperature and pressure and,
calculation method		in case of a live density measurement, also at
		the density temperature and pressure (Zdens).
		1: Override value
		Uses the meter compressibility and density
		compressibility override values
		2: AGA8 (detailed)
		Requires a gas composition
		3: SGERG (AGA 8 gross)
		Requires process inputs for hydrogen and at
		least 3 out of the 4 following inputs:
		nitrogen, carbon dioxide, relative density
		and gross heating value. (set by parameter
		SGERG input method).
		4: AGA NX19
		Requires process inputs for nitrogen,
		carbon dioxide, specific gravity and gross
		heating value.

		5: Custom The values that are written to the tags Meter compressibility custom value and			In case of a remote run FC with Station product enabled the base compressibility is read from the station flow computer.		
		Density compressibility custom value will be used. Use this option if the compressibility value(s) is sent to the flow computer over a Modbus communications	Base compressibility override value	1000	Base compressibility override value that is used if the base compressibility calculation method is set to 'Override value'		
		link or if you want to apply user-defined calculations to the compressibility. 6: AGA 8 Part 2 (GERG 2008) Requires a gas composition Can only be used if Add-on programs version 1.0.0.1170 or higher is installed (see display: System, Versions).	(Remote) base compressibility fallback type	1000	Only applicable if the base compressibility calculation method is set to 'Gas Chromatograph', or in case of a 'remote run' flow computer with Station product enabled. Determines what to do in case the communication to the gas chromatograph / remote station flow computer fails.		
		7: GSSSD MR113 2003 Requires a gas composition and an absolute humidity input Add-on programs version 1.0.0.1170 or			1: Last good value Keep on using the last value that was obtained when the input was still healthy. 2: Fallback value		
		higher recommended. 8: GOST 30319 SGERG91 Requires process inputs for nitrogen, carbon dioxide and base density			Use the value as specified by parameter 'Fallback value' The fallback value is usually a fixed value and will generally never be changed during the		
Meter compressibility override value	1000	Meter compressibility override value that is used when the compressibility calculation method is set to 'Override value'			lifetime of the flow computer. 3: Override value Use the value as specified by parameter 'Override value'		
Density compressibility override value	1000	Density compressibility override value that is used when the compressibility calculation method is set to 'Override value'	(Remote) base compressibility fallback value	1000	Only used if Fallback type is 'Fallback value'. Represents the base compressibility [-] to be used when the communication to the gas chromatograph / remote station flow		
Base compressibility	1000	Method to calculate the compressibility factor at the reference conditions (Zbase).			computer fails.		
calculation method		1: Override Uses the base compressibility override value 2: AGA8 (detailed) Requires the gas composition 3: SGERG (AGA 8 gross)	ed to calculate the base density if base set to 'Gas composition'.				
		Requires process inputs for hydrogen and at least 3 out relative density and gross heating value. (set by parameter SGERG	Molar mass calculation	1000	Method to calculate the molar mass 1: Override		
		input method).	method		Uses the molar mass override value		
		4: AGA NX19 Requires process inputs for nitrogen,			2: AGA8 (detailed) Requires a gas composition		
		carbon dioxide, specific gravity and gross heating value.			3: SGERG (AGA-8 gross) Requires process inputs for hydrogen and at		
		5: ISO6976-1983 Requires a gas composition			least 3 out of the 4 following inputs: nitrogen, carbon dioxide, relative density and gross		
		6: ISO6976-1995 Requires a gas composition			heating value. (set by parameter SGERG input method).		
		7: GPA2172			4: ISO6976-1983		
		Requires a gas composition			Requires a gas composition 5: ISO6976-1995		
		8: Custom The value that is written to the tag Base			Requires a gas composition		
		compressibility custom value will be used.			6: GPA2172 Requires a gas composition		
		Use this option if the base compressibility value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the			7: Custom The value [kg/kmol] that is written to the tag Molar mass custom value will be used. Use		
		base compressibility. 9: Gas Chromatograph Uses the base compressibility that is read			this option if the molar mass value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the molar mass.		
		from the gas chromatograph. 10: AGA 8 Part 2 (GERG 2008) Requires a gas composition Can only be used if Add-on programs version 1.0.0.1170 or higher is installed (see			8: AGA 8 Part 2 (GERG 2008) Requires a gas composition Can only be used if Add-on programs version 1.0.0.1170 or higher is installed (see display:		
		display: System, Versions). 11: GSSSD MR113 2003			System, Versions). 9: GSSSD MR113 2003		
		Requires a gas composition and an absolute humidity input			Requires a gas composition and an absolute humidity input		
		Add-on programs version 1.0.0.1170 or higher recommended.			Add-on programs version 1.0.0.1170 or higher recommended.		
		12: GOST 30319 SGERG91			10: ISO6976-2016 Requires a gas composition		
		Requires process inputs for nitrogen, carbon dioxide and base density			Requires a gas composition In case of a remote run FC with Station product		
		13: ISO6976-2016			enabled the molar mass is read from the station		

Molar mass override value	1000	Molar mass override value [kg/kmol] that is used when the molar mass calculation method is set to 'Override'
Remote molar mass fallback type	1000	Only applicable in case of a 'remote run' flow computer with Station product enabled. Determines what to do in case the communication to the remote station flow computer fails.
		1: Last good value Keep on using the last value that was obtained when the input was still healthy.
		2: Fallback value Use the value as specified by parameter 'Fallback value'
		The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer.
		3: Override value Use the value as specified by parameter 'Override value'
Remote molar mass fallback value	1000	Only used if Fallback type is 'Fallback value'. Represents the base molar mass [kg/kmol] to be used when the communication to the remote station flow computer fails.

Heating value

Heating value	1000	Controls how the heating value is determined
calculation		1: HV process input
method		The heating value is provided as a process
		input (override value, analog input, HART
		input, GC value, custom value). See the
		paragraph 'Gross Heating value input'
		2: ISO6976-1995
		Requires a gas composition
		3: ISO6976-1983
		Requires a gas composition
		4: GPA-2172
		Requires a gas composition
		5: AGA-5
		Requires a gas composition and specific
		gravity
		6: ISO6976-2016
		Requires a gas composition
		In case of a remote run FC with Station product
		enabled the heating value is read from the
		station flow computer.

AGA-8 settings

Only applicable if AGA-8 (detailed) is selected to calculate the compressibility, base compressibility and/or molar mass

AGA-8 edition	1000	Edition of the AGA-8 standard:
		1: 1994
		2: 2017

SGERG settings

Only applicable if SGERG (AGA8 gross) is selected to calculate the compressibility and / or the base compressibility

SGERG input method	1000	SGERG calculation method as specified in the standard:
		1: All inputs known
		2: Unknown N2
		3: Unknown CO2
		4: Unknown GHV
		5: Unknown RD (relative density)
SGERG reference	1000	Reference conditions for the heating value and
conditions		relative density values.
		1: GHV/RD 25/0 °C
		2: GHV/RD 0/0 °C
		3: GHV/RD 15/15 °C

NX-19 settings

Only applicable if NX-19 is selected to calculate the compressibility and / or the base compressibility

NX19 G9 correction method	1000	Controls whether the AGA-NX-19-mod / AGA- NX-19-mod.BR.KORR.3H is used instead of the AGA-NX-19-1962 standard calculation.
method		0: Disabled 1: Enabled

ISO-6976 settings

Only applicable if ISO6976: 1983, ISO6976: 1995 or ISO6976: 2016 is selected to calculate the base compressibility, molar mass and / or heating value.

1000070 4000	1000	
IS06976-1983	1000	Only applicable if ISO6976:1993 is selected to
metering		calculate the base compressibility, molar mass
reference temp.		and / or heating value.
		The temperature used for calculating the
		compressibility, the density and the real
		1: 0 °C
		2: 15 °C
IS06976-1983	1000	Only applicable if ISO6976:1983 is selected to
combustion ref.		calculate the base compressibility, molar mass
temp.		and / or heating value.
		Temperatures used for calculating the calorific
		values. 1st value represents the combustion
		reference temperature and the 2nd value the
		Gas volume reference temperature
		1: 25 °C / 0 °C
		2: 0 °C / 0 °C
		3: 15 °C / 0 °C
		4: 15 °C / 15 °C
ISO-6976-1995	1000	The reference temperatures for combustion /
reference		metering:
conditions		1: 15°C / 15°C
		2: 0°C / 0°C
		3: 15°C / 0°C
		4: 25°C / 0°C
		5: 20°C / 20°C
		<u>5:20 C / 20 C</u> 6: 25°C / 20°C
ISO-6976-1995	1000	Only applicable if ISO6976:1995 is selected to
heating value	1000	calculate the base compressibility, molar mass
calculation		
method		and / or heating value.
method		Defines how the calorific value is calculated
		from the gas composition 1: Definitive method
		Calculates the mass based calorific value
		from the molar based calorific values from
		table 3 and from the calculated molar mass
		values.
		Calculates the volume based calorific value
		by multiplying the molar based calorific
		values from table 3 by $p2/R.T2$
		•
		2: Alternative method
		Uses the values from tables 3, 4 and 5 as specified in the standard.
		•
		Refer to paragraph 6.1 and 7.1 of the ISO- 6976:1995 standard for more information
ISO-6976-	1000	Only applicable if ISO6976:1995 or
1995/2016	1000	
molar mass		ISO6976:2016 is selected to calculate the base compressibility, molar mass and / or heating
calculation		
method		value.
methou		Defines how the molar mass is calculated from
		the gas composition.
		1: From atomic masses
		Calculates the molar mass from the atomic
		masses as defined in the note of Table 1 of
		the standard
		2: Use table values

		Uses the values from Table 1 of the standard
ISO-6976-2016	1000	The reference temperatures for combustion /
reference		metering:
conditions		1: 15°C / 15°C
		2: 0°C / 0°C
		3: 15°C / 0°C
		4: 25°C / 0°C
		5: 20°C / 20°C
		6: 25°C / 20°C
		7: 60°F / 60°F

GPA-2172 settings

Only applicable if GPA2172 is selected to calculate the base compressibility, molar mass and / or heating value.

GPA2172	1000	The GPA2172 standard uses the gas properties
edition		that are defined in the GPA -2145 standard. The
		latter standard is updated periodically.
		Flow-X supports the following editions of the
		GPA-2145 standard:
		1: GPA2145-00
		2000 edition
		2: GPA2145-03
		2003 edition
		3: GPA2145-09
		2009 edition
		4: GPA2145-16
		2016 edition
		Note: earlier versions of the GPA-2145 standard
		did not contain metric values.

GSSSD MR-113 settings

Absolute	1000	Determines how the absolute humidity [g/m3]
humidity input		is read.
type		0: Fixed value
		1: Auxiliary input 1
		2: Auxiliary input 2
		An auxiliary input can be used to read the
		absolute humidity as an analog or HART input.
		In case of a remote run FC with Station
		product enabled the absolute humidity is read
		from the station flow computer.
Absolute	1000	Absolute humidity [g/m3] to be used if
humidity input –		Absolute humidity input type is set to 'fixed
Fixed value		value'.
Humidity	1000	Determines how the humidity pressure
pressure input		(pressure at the humidity transmitter) [bar] is
type		read.
		0: Fixed value
		1: Auxiliary pressure input 1
		2: Auxiliary pressure input 2
		3: Density pressure
		An auxiliary input can be used to read the
		humidity pressure as an analog or HART input.
		In case of a remote run FC with Station
		product enabled the humidity pressure is read
	1000	from the station flow computer.
Humidity	1000	Humidity pressure [bar(a)] to be used if
pressure – Fixed value		Humidity pressure input type is set to 'fixed value'.
Humidity	1000	Determines how the humidity temperature
temperature	1000	(temperature at the humidity transmitter) [°C]
input type		is read.
inpactype		0: Fixed value
		1: Auxiliary temperature input 1
		2: Auxiliary temperature input 2
		3: Density temperature
		An auxiliary input can be used to read the
		humidity temperature as an analog, PT100 or
		HART input.
		In case of a remote run FC with Station
		product enabled the humidity temperature is
		read from the station flow computer.

Humidity temperature – Fixed value	1000	Humidity temperature [[°C] to be used if Humidity temperature input type is set to 'fixed value'.
Apply MR113 rounding rules	1000	Determines if the rounding rules as defined in the GSSSD MR-113 2003 standard are applied. 0: No
		2: Yes

GOST 30319 SGERG91 settings

GOST 30319-2	1000	GOST 30319-2 edition
edition		1: 1996
		2: 2015

Dynamic viscosity

1000	Dynamic viscosity of the gas at flowing
	conditions [Pa.s].
	1 [Pa.s] = 1000 [cP]. Value is required for ISO-
	5167 / AGA-3 mass flow calculations.
	1000

Isentropic exponent

lsentropic exponent	1000	Isentropic exponent of the gas at flowing conditions [dimensionless]. Also referred to as κ (kappa). For an ideal gas this coefficient is equal to the ratio of the specific heat capacity at constant pressure to the specific heat at constant volume. Value is required for ISO-5167 / AGA-3 mass flow calculations.

Heating Value input

The heating value is used to calculate the energy flow rates and totalizers.

The heating value is either calculated (see paragraph 'Calculation Setup') or read into the flow computer as a process value (analog, HART, Gas Chromatograph).

Either the Gross Heating value (GHV, also called 'Higher Heating value' or 'Higher calorific value') or the Net Heating value (NHV, also called 'Lower Heating value' or 'Lower calorific value') can be used in the calculations. This can be configured by parameter 'Use Net HV for energy' on display Configuration, Overall setup, Common settings.

Furthermore, a volume based heating value [MJ/sm3] or mass based heating value [MJ/kg] can be selected. Preferably a volume based heating value is to be used in case of a volumetric flow meter and a mass based heating value in case of a mass flow meter.

In case of SGERG / AGA8 gross and NX-19 the volume based GHV is used as input to calculate the compressibility and / or molar mass (see paragraph 'Calculation Setup').

Display \rightarrow Configuration, Run <x>, Gas properties, Heating value input

 $\label{eq:Display} \ensuremath{ \mathsf{Display}} \rightarrow \ensuremath{ \mathsf{Configuration}}, \ensuremath{ \mathsf{Station}}, \ensuremath{ \mathsf{Gas}} \ensuremath{ \mathsf{ properties}}, \ensuremath{ \mathsf{Heating}} \ensuremath{ \mathsf{value}}$ input

with <x> the module number of the meter run

66

Input type

Input type	1000	Type of input
		0: Calculated
	Uses the heating value calculated according to ISO-	
		6976:83, ISO-6976:95 or GPA2172 (see paragraph
		'Calculation Setup')
		1: Always use override
		2: Analog input
		4: HART
		5: Custom input
		The value [MJ/sm3] or [MJ/kg] that is written to
		the tag Heating value custom value will be used.
		Use this option if the heating value value is sent
		to the flow computer over a Modbus
		communications link or if you want to apply
		user-defined calculations to the heating value.
		7: Gas chromatograph
		Uses the heating value read from a gas
		chromatograph
		In case of a remote run FC with Station product
		enabled the heating value is read from the station
		flow computer.
Heating value	1000	Determines whether a volumetric or mass based
type		heating value is used in the calculations.
		1: Volume based
		2: Mass based

	 Last good value Keep on using the last value that was obtained when the input was still healthy.
	2: Fallback value
	Use the value as specified by parameter 'Fallback value'
	The fallback value is usually a fixed value and will generally never be changed during the lifetime of the flow computer.
	3: Override value Use the value as specified by parameter 'Override value'
Fallback value 1000	Only used if Fallback type is 'Fallback value'.
	Represents the heating value [MJ/sm3] or [MJ/kg] to be used when the input fails.
Input frozen alarm	
Input frozen time 1000	Maximum time [s] which the input value is allowed to remain unchanged.

	allowed to remain unchanged.
	If the input value hasn't changed during this time, an 'input frozen' alarm is given.
	Only applicable in case of a life (not calculated) or custom input value. Not applicable for input type 'always use override'.
	Enter 0 to disable this functionality.

Analog input settings

These settings are only applicable if the **heating value input type** is 'Analog input', or if the **heating value input type** is 'HART' with **HART to analog fallback** enabled.

Analog input module	1000	Number of the flow module to which the signal is physically connected.
		-1: Local module means the module of the meter run itself
Analog input channel	1000	Number of the analog input channel on the selected module to which the signal is physically connected.

HART settings

These settings are only applicable if the **heating value input type** is 'HART'.

HART internal device nr.	1000	Internal device nr. of the HART transmitter as assigned in the configuration software (Flow- Xpress: 'Ports & Devices')
HART variable	1000	Determines which of the 4 HART variables provided by the HART transmitter is used. Select the variable that represents the Heating Value . Usually this is the 1st (primary) variable.
HART to analog fallback	1000	 Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal. O: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead the value corresponding with the 'Fallback type' will be used. 1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fails. When both the HART and the 'Fallback type' will be used. If multiple HART transmitters are installed within a loop, then the HART to analog fallback option

Fail fallback

Fallback type	1000	Determines what to do in case the heating value
		input fails.

CO2, H2 and N2 inputs

If SGERG / AGA8 gross is chosen as method to calculate the compressibility, base compressibility and/or molar mass, process inputs for hydrogen (H2), nitrogen (N2; optional) and carbon dioxide (CO2; optional) are needed.

If AGA NX-19 is chosen as method to calculate the compressibility and/or base compressibility, process inputs for nitrogen (N2) and carbon dioxide (CO2) are needed.

Display \rightarrow Configuration, Run <x>, Gas properties, H2 input

Display \rightarrow Configuration, Run <x>, Gas properties, N2 input Display \rightarrow Configuration, Run <x>, Gas properties, CO2 input Display \rightarrow Configuration, Station, Gas properties, H2 input Display \rightarrow Configuration, Station, Gas properties, N2 input Display \rightarrow Configuration, Station, Gas properties, CO2 input

with <x> the module number of the meter run

These displays are only available if **SGERG (AGA8 gross)** or **AGA NX-19** is selected to calculate the compressibility and / or molar mass (see paragraph 'Calculation Setup').

Input type				
input type 1000	Type of input			
	0: None			
		The input is not used		
		1: Always use override		
		2: Analog input		
		4: HART		
		5: Custom input		

The value [% mol/mol] that is written to the CO2 / H2 / N2 custom value will be used. Use this option if the value is sent to the flow computer over a Modbus communications link or if you want to apply user-defined calculations to the CO2 / H2 / N2 content.
7: Gas chromatograph value Uses the CO2 / H2 / N2 value read from a gas chromatograph
In case of a remote run FC with Station product enabled the CO2 / H2 / N2 values are read from the station flow computer.

Analog input settings

These settings are only applicable if the **input type** is 'Analog input', or if the **input type** is 'HART' with **HART to analog fallback** enabled.

Analog input	1000	Number of the flow module to which the signal is
module	2000	physically connected.
		-1: Local module means the module of the meter run itself
Analog input channel	1000	Number of the analog input channel on the selected module to which the signal is physically connected.
HART to analog fallback	1000	Only applies for a single HART transmitter, where the 4-20 mA signal is provided together with the HART signal.
		0: Disabled The 4-20 mA signal will not be used when the HART signal fails. Instead the value corresponding with the 'Fallback type' will be used. 1: Enabled The 4-20 mA signal will be used when the HART signal fails. When both the HART and the mA signal fail the value corresponding with the 'Fallback type' will be used. If multiple HART transmitters are installed within a loop, then the HART to analog fallback option can't be used.

HART settings

These settings are only applicable if the **input type** is 'HART'.

HART internal device nr.	1000	Internal device nr. of the HART transmitter as assigned in the configuration software (Flow-Xpress: 'Ports & Devices')
HART variable	1000	Determines which of the 4 HART variables provided by the HART transmitter is used. Select the variable that represents the CO2 / H2 / N2 value . Usually this is the 1st (primary) variable.

Fail fallback

Fallback type	1000	Determines what to do in case the input fails.
		1: Last good value
		Keep on using the last value that was obtained
		when the input was still healthy.
		2: Fallback value
		Use the value as specified by parameter
		'Fallback value'
		The fallback value is usually a fixed value and
		will generally never be changed during the
		lifetime of the flow computer.
		3: Override value
		Use the value as specified by parameter
		'Override value'
Fallback value 1	1000	Only used when Fallback type is 'Fallback value'.
		Represents the value [%mol/mol] to be used when
		the input fails.

Input frozen alarm

nput frozen time	1000	Maximum time [s] which the input value is allowed to remain unchanged.
		If the input value hasn't changed during this time, an 'input frozen' alarm is given.
		Not applicable for input type 'always use override'.
		Enter 0 to disable this functionality.

Analog outputs

Each flow module provides 4 analog outputs, which can be set up at meter run level for **run process variables** and at station level for **station process variables**.

Display \rightarrow Configuration, Run <x>, Analog outputs, Analog output <y>

Display \rightarrow Configuration, Station, Analog outputs, Analog output <y>

with <x> the module number of the meter run and <y> the analog output number (1-4)

Analog	600	The variable that is used for the analog output.
output <y></y>	000	For each run any of the following variables can be
Variable		selected:
Variable		-1 : Custom
		0: Not assigned
		1: Gross volume flow rate
		2: Base volume flow rate
		3: Mass flow rate
		4: Energy flow rate
		55
		5: Specific gravity
		6: Base density
		7: Relative density
		8: Heating value (volumetric)
		9: Heating value (mass based)
		10: Meter temperature
		11: Meter pressure [bara]
		12: Meter pressure [barg]
		13: Meter density
		14: Observed density
		For the station the following variables can be selected:
		-1: Custom
		0: Not assigned
		1: Gross volume flow rate
		2: Base volume flow rate
		3: Mass flow rate
		4: Energy flow rate
		5: Specific gravity
		6: Base density
		7: Relative density
		8: Heating value (volumetric)
		9: Heating value (mass based)
		10: Observed density
		Selection 'Not assigned' disables the output.
		If 'Custom' is selected then the value that is written (by
		a custom calculation) to the Analog output <y> custom</y>
		value will be used. This option can be used to send any
		other variable to an analog output.
Analog	600	Number of the flow module that is used for this output.
output <y></y>		-1: Local module means the module of the meter run
module		itself
Analog	600	Analog output channel on the specified module that is
5	500	
output <y></y>		-1: Local module means the module of the meter run

(!)

The analog output scaling and dampening factors can be configured on the I/O configuration display: IO, Module <x>, Configuration, Analog outputs, Analog output <y>

Pulse outputs

Each flow module provides a maximum of 4 pulse outputs.

Pulse outputs can be set up both at meter run level for **run totals** and at station level for **station totals**.

In order to be able to use a digital channel as a pulse output, the channel must be configured as **Pulse output (1-4)** (I/O, Module <y>, Configuration, Digital IO assign).

Display \rightarrow Configuration, Run <x>, Pulse outputs, Pulse output <y>

Display \rightarrow Configuration, Station, Pulse outputs, Pulse output $\langle y \rangle$

with <x> the module number of the meter run

and <y> the pulse output number (1-4)

Pulse output	600	The totalizer that is used for the pulse output.
<y> totalizer</y>		1: Custom
		0: Not assigned
		1: Indicated (forward)*
		2: Gross volume (forward)
		3: Base volume (forward)
		4: Mass (forward)
		5: Energy (forward)
		6: Good pulses (forward)*
		7: Error pulses (forward)*
		8: Indicated (reverse)*
		9: Gross volume (reverse)
		10: Base volume (reverse)
		11: Mass (reverse)
		12: Energy (reverse)
		13: Good pulses (reverse)*
		14: Error pulses (reverse)*
		15: Indicated (forward/reverse)*
		16: Gross volume (forward/reverse)
		17: Base volume (forward/reverse)
		18: Mass (forward/reverse)
		19: Energy (forward/reverse)
		20: Good pulses (forward/reverse)*
		21: Error pulses (forward/reverse)*
		*Only available on meter run level
		Selection 'Not assigned' disables the output.
		If 'Custom' is selected, then the value that is written
		to the tag Pulse output <y> custom increment</y> will
		be used. Use this option if you want to apply user-
		defined calculations to the totalizers, f.e. converting
		them into different units.
Pulse output	600	Number of the flow module to which the signal is
<y> module</y>		physically connected.
5		-1: Local module means the module of the meter run
		itself
Pulse output	600	Pulse output number on the specified module that
<y> index</y>		is used for the signal.
2		1: Pulse output 1
		2: Pulse output 2
		3: Pulse output 3
		4: Pulse output 4
Pulse output	600	Factor that specifies the amount that corresponds
You se output <y> Quantity</y>	000	to 1 pulse. The unit depends on the totalizer that
per pulse		has been selected: [m3/pls], [sm3/pls] or [kg/pls].
per puise		has been beleeted. [his/pis], [shis/pis] of [kg/pis].
		E.g. a value of 100 means that 1 pulse is generated
		whenever 100 input units (m3, sm3 or kg) have been

accumulated.

The pulse output settings like pulse duration and max. frequency can be configured on the I/O configuration display: IO, Module <x>, Configuration, Pulse outputs, Pulse output <y>

Frequency outputs

Each flow module provides a maximum of 4 frequency outputs, each of which can be used to output a process variable (e.g. a flow rate) as a periodic signal with a frequency proportional to the process value.

Frequency outputs can be set up both at meter run level for **run process variables** and at station level for **station process variables**.

In order to be able to use a digital channel as a frequency output, the channel must be configured as **Frequency output (1-4)** (I/O, Module <y>, Configuration, Digital IO assign).

The use of frequency outputs is only supported by FPGA version 1422-21-2-2012 or later.

Display \rightarrow Configuration, Run <x>, Frequency outputs, Frequency output <y>

Display \rightarrow Configuration, Station, Frequency outputs, Frequency output <y>

with <x> the module number of the meter run

and <y> the frequency output number (1-4)

600	
600	The totalizer that is used for the frequency output. 1: Custom
	0: Not assigned
	1. Indicated flow rate
	2. Gross volume flow rate
	3: Base volume flow rate
	4. Mass flow rate
	5: Energy flow rate
	Selection 'Not assigned' disables the output.
	If 'Custom' is selected then the value that is
	written (by a custom calculation) to the Frequency
	output <y> custom value will be used. This option</y>
	can be used to send any other variable to a
	frequency output.
600	Number of the flow module to which the signal is
	physically connected.
	-1: Local module means the module of the meter
	run itself
600	Frequency output number on the specified module
	that is used for the signal.
	1: Frequency output 1
	2: Frequency output 2
	3: Frequency output 3
	4: Frequency output 4

The frequency output scaling factors (zero and full scale values and frequencies) can be configured on the I/O configuration display: IO, Module <x>, Configuration, Frequency outputs, Frequency output <y>

Snapshot report

Display \rightarrow Configuration, Run <x>, Snapshot report

Display \rightarrow Configuration, Station, Snapshot report

with <x> the module number of the meter run

Snapshot 600 report	600	Defines whether or not snapshot reports can be generated.
	0 : Disabled	
	1: Enabled	
		Please be aware that a snapshot report has to be configured and enabled in Flow-Xpress prior to writing the application to the flow computer.

Snapshot digital input

Optionally a digital input can be used to issue a snapshot request command, in order to generate (and print) a snapshot report for a specific run or for the station.

Print snapshot digital input module	600	Number of the flow module to which the input signal is physically connected. -1: Local module means the module of the meter run itself
Print snapshot digital output channel	600	Number of the digital channel on the selected module to which the input signal is physically connected. Enter '0' to un-assign the snapshot request digital input.

Valve control

The Flow-X application provides control of the following valves:

For each run:

- Run inlet valve
- Run outlet valve
- Crossover valve (Run to prover valve)

The control logic is based on 1 common or 2 separate output signals for the valve open and close commands, and 0, 1 or 2 input signals for the valve position (Open and Closed).

The valve position is determined as follows:

- If no inputs are available, then the position is determined from the latest issued valve command. No 'traveling' or 'Fault' positions can be derived.
- If one single input is available (for either the open or the closed position), then the valve is considered to be in the opposite position if the position signal is OFF. No 'traveling' or 'Fault' positions can be derived.
- If two inputs are available, then the position is derived as follows:

Closed DI	Open DI	Valve position
ON	OFF	Closed
OFF	ON	Open
OFF	OFF	Traveling or Valve fault, depending on configured 'traveling type'
ON	ON	Traveling or Valve fault, depending on configured 'traveling type'

Separate open and close commands are available for manual and auto modes of operations. Manual mode is meant for direct control by the operator, automatic mode is meant for logic, which can be programmed through 'User calculations' in Flow-Xpress.

A time-out limit is applied to the valve travel time. A 'valve travel timeout' alarm is generated when the travel timer has reached the limit before the valve has reached its destination.

The valve may be equipped with a local / remote switch, which can be read into the flow computer through a digital input. If this input is ON, then a 'valve local control' alarm is generated and any open / close commands on the flow computer are rejected.

If the valve leaves the open or closed position while no command has been given from the flow computer (apparently because the valve is controlled locally), the travel timer is started and a 'valve travel timeout' alarm is generated when the valve remains too long in the 'traveling' state.

The valve may be equipped with a 'valve fault' digital output. This signal can be read into the flow computer through a digital input. A 'valve fault' alarm is generated when this input is ON.

Permissive flags are available to interlock the opening or closing of valves. The permissive flags are ON by default and can be set / reset through 'User calculations' in Flow-Xpress.

The crossover valve can be used in case of master meter proving with a so-called 'z-configuration', through which the two valves can alternatively be set in parallel or serial line-up. One of the valve position inputs can then be used to indicate to the flow computer that the valves are in serial configuration, so only one of the totals must be taken into account in the station total. See paragraph 'Serial mode' for more information.

Display \rightarrow Configuration, Run <x>, Valve control

Display \rightarrow Configuration, Prover A/B, Valve control

With <x> the module number of the meter run

The valve control configuration displays are only visible if valve control has been enabled on the Configuration, Run <x>, Run control display.

The following settings are available for each individual valve:

Valve control	600	0: None
signals		Valve control is disabled
		1: Two pulsed outputs
		Two separate outputs for open and close commands.
		The outputs remain ON until the valve control pulse
		duration time has passed.
		2: Two maintained outputs
		Two separate outputs for open and close commands. The outputs remain ON until the valve has reached its target position, or until the travel timeout time has passed.
		3: Single output (open)
		1 output to open the valve (ON = open). After a valve open command the output stays ON until a close command is given.
		4: Single output (close)
		1 output to close the valve (ON = close). After a valve
		close command the output stays ON until an open
		command is given
Valve control	600	Only applicable if Valve control signals is set to 'Two
pulse		pulsed outputs'.
duration		Defines the pulse duration [s] of the valve control
		output signals.
Valve	600	0: No inputs
position		No inputs for open and close positions. The valve
signals		position is solely derived from the latest valve
		command.
		1: Two inputs
		Two separate inputs for open and close positions.
		2: Single input (open)
		Single input that is ON when the valve is in the open position, else OFF.
		3: Single input (closed)
		One input that is ON when the valve is in the closed
		position, else OFF.
Valve	600	Only applicable in case of 2 position signals.
traveling		Determines how the 'traveling' and 'fault' statuses are
type		derived:
		1: Both inputs inactive
		The valve is in the 'traveling' state if both the open
		and close position inputs are OFF. The valve is in the
		'fault' state if both the open and close position
		inputs are ON.

		2: Both inputs active
		The valve is in the 'traveling' state if both the open and close position inputs are ON. The valve is in the 'fault' state if both the open and close position inputs are OFF.
Valve travel timeout period	600	Maximum allowed time [s] for the valve to be traveling to the required position. The valve timeout alarm is raised when the valve does not reach the required position within this time.

Position inputs

Position II	nputs	
Open position DI module	600	Module to which the open position signal is physically connected.
		-1: Local module means the module of the meter run itself
Open position DI channel	600	Digital channel on the selected module to which the open position signal is physically connected
Closed position DI	600	Module to which the closed position signal is physically connected.
module		-1: Local module means the module of the meter run itself
Closed position DI channel	600	Digital channel on the selected module to which the closed position signal is physically connected
Control ou	utputs	
Open control DO	600	Module to which the open control output signal is physically connected
module		-1: Local module means the module of the meter run itself
Open control DO channel	600	Digital channel on the selected module to which the open control output signal is physically connected
Close control DO module	600	Module to which the close control output signal is physically connected
		-1: Local module means the module of the meter run itself
Close control DO channel	600	Digital channel on the selected module to which the close control output signal is physically connected

Local / remote input

Local / 600 remote DI	600	Module to which the local / remote signal is physically connected.
module		-1: Local module means the module of the meter run itself
Local / remote DI channel	600	Digital channel on the selected module to which the local / remote signal is physically connected Enter 0 to disable the local / remote digital input.

Valve fault input

Valve fault 600 DI module	600	Module to which the valve fault signal is physically connected.
		-1: Local module means the module of the meter run itself
Valve fault DI channel	600	Digital channel on the selected module to which the valve fault signal is physically connected.
		Enter 0 to disable the valve fault digital input.

Open / close permissives

Valve open permissive	600	Determines whether or not a valve open permissiv e is taken into account. If enabled the valve can only be opened if the valve open permissive (to be written through Modbus or using a 'custom calculation') is ON. 0: Disabled 1: Enabled
Valve close permissive	600	Determines whether or not a valve close permissive is taken into account. If enabled the valve can only be closed if the valve close permissive (to be written through Modbus or using a 'custom calculation') is ON. 0: Disabled 1: Enabled

Flow / pressure control

The application supports PID control for Flow / Pressure Control Valves. PID control can be configured either on run level (separate control valves for individual meter runs) or at station level (one control valve for the whole station consisting of multiple runs).

Three types of control are supported:

1. Flow control

The flow computer controls a flow control valve (FCV) to maintain a flow rate that is defined by the flow rate setpoint.

2. Pressure control

The flow computer controls a pressure control valve (PCV) to maintain a pressure that is defined by the pressure setpoint.

3. Flow /pressure control

Primary control is on flow. The flow computer tries to maintain or reach the flow rate that is defined by the flow control setpoint. In the meantime it checks that the pressure doesn't pass a pressure limit, which is defined by the pressure setpoint / limit value. The limit may be a minimum value (to ensure a minimum delivery pressure) or a maximum value (to ensure a maximum back pressure).

If the process pressure passes the limit, then the flow computer switches over to pressure control, such that the pressure is maintained at the pressure setpoint / limit value. This means that the flow will stabilize on a flow rate that differs from the original flow rate setpoint. Apparently the flow rate setpoint can't be reached without passing the pressure limit. Depending on the process properties (pressure rises or drops with increasing flow rate) and the type of pressure limit (minimum or maximum) the actual flow rate will be lower or higher than the flow rate setpoint.

The flow computer remains in pressure control mode as long as the flow rate setpoint can't be reached without passing the pressure limit. As soon as the flow rate set point can be reached without passing the pressure limit (f.e. because a different flow rate setpoint is entered), then the flow computer switches back to flow control, controls the flow rate to the flow rate setpoint and maintains it at the flow rate setpoint value.

An example. Let's consider a process for which the pressure increases with decreasing flowrate and for which a maximum pressure limit is configured at 30 bar. The actual flow rate is 2000 m3/h and the pressure is 25 bar. The operator enters a flow rate setpoint of 1000 m3/h, so the flow computer closes the FCV and the flow rate decreases. At the same time the pressure increases and at a flow rate of 1200 m3/h the pressure reaches the limit of 30 bar. Apparently the flow rate setpoint can't be reached without the pressure getting too high. The flow computer switches over to pressure control and maintains the pressure at 30 bar. The flow rate setpoint at 1500 m3/h. Now the operator sets the flow rate setpoint at 1500 m3/h. that is reachable without passing the pressure limit, so the flow computer switches back to flow control and directs the flow rate to 1500 m3/h. (If the operator would have chosen a setpoint below the actual flow rate, f.e. 1100 m3/h, then the flow computer would have remained in pressure control mode and nothing would have happened).

 \mathbb{X}

Display \rightarrow Configuration, Run <x>, Flow control

[®] Display → Configuration, Station, Flow control

 $\label{eq:Display} \mathsf{Display} \rightarrow \mathsf{Configuration}, \mathsf{Proving}, \mathsf{Flow} \ \mathsf{control}$

With <x> the module number of the meter run

The flow control configuration displays are only visible if flow control has been enabled on any of the following displays:

Configuration, Run <x>, Run control Configuration, Station, Station control

The following configuration settings are available:

Flow /	600	Process value that is used for PID Control.
pressure		0: None
control mode	Flow / pressure control is disabled	
	1: Flow control	
		Controls the flow rate.
		2: Pressure control
		Controls the pressure
		3: Flow / pressure control
		Primarily controls the flow rate; switches over to
		pressure control if a configurable pressure limit is
		passed.

Flow control

These settings are applicable if the **Flow / pressure control mode** is set to 'Flow control' or 'Flow / pressure control'.

Flow control -	600	Process value that is used for flow control.
Input		1: Gross volume
		Controls the gross volume flow rate [m3/hr]
		2: Base volume
		Controls the base volume flow rate [sm3/hr]
		3: Mass
		Controls the mass flow rate [kg/hr]
		4: Custom
		The value that is written to the tag Flow control -
		Custom process value will be used. Use this option if
		the flow rate value is sent to the flow computer over
		a Modbus communications link or if you want to
		apply user-defined calculations to the flow rate to be
		used for flow control.
Flow control -	600	Proportional gain (P) factor for flow control
Proportional		Controller output = Proportional gain * Actual error.
Gain (P)		Proportional Gain = 100 / Proportional Band
Flow control - Integral gain	600	Integral gain (I) factor for flow control
		Integral gain = 1 / [Seconds per repeat], e.g. an integral
(I)		gain of 0.02 means 1 repeat per 50 seconds.
		As a rule of thumb set this to the time [sec] it takes for
		the variable to react to the output.
Flow control	600	Highest flow rate that can be achieved by controlling
-Full scale		the valve. Units are the same as flow rate process value.
value		Equals the flow rate process value that corresponds to
		100% control output (20 mA) if Flow Control - Reverse

Control - Reverse mode is enabled. The unit is the same as the process value. D Lowest flow rate that can be achieved by controlling the valve. Units are the same as flow rate process value. Equals the flow rate process value that corresponds to 0% control output (4 mA) if Flow Control - Reverse mode is disabled, or 100% control output (20 mA) if Flow Control - Reverse mode is enabled. The unit is the same as the process value. D Enables or disables reverse control mode for flow control.
 Lowest flow rate that can be achieved by controlling the valve. Units are the same as flow rate process value. Equals the flow rate process value that corresponds to 0% control output (4 mA) if Flow Control - Reverse mode is disabled, or 100% control output (20 mA) if Flow Control - Reverse mode is enabled. The unit is the same as the process value. Enables or disables reverse control mode for flow
valve. Units are the same as flow rate process value. Equals the flow rate process value that corresponds to 0% control output (4 mA) if Flow Control - Reverse mode is disabled, or 100% control output (20 mA) if Flow Control - Reverse mode is enabled. The unit is the same as the process value. Enables or disables reverse control mode for flow
Equals the flow rate process value that corresponds to 0% control output (4 mA) if Flow Control - Reverse mode is disabled, or 100% control output (20 mA) if Flow Control - Reverse mode is enabled. The unit is the same as the process value. Enables or disables reverse control mode for flow
Flow Control - Reverse mode is enabled. The unit is the same as the process value. Enables or disables reverse control mode for flow
Enables or disables reverse control mode for flow
control.
0: Disabled Select 'Disabled' if the flow rate drops when the valve closes.
1: Enabled Select 'Enabled' if the flow rate drops when the valve opens.
 Deadband on flow control. Avoids that the control valve is constantly moving, even though the actual flow rate is very close to the setpoint.
Flow control will be suspended if the flow rate is higher than the setpoint minus the deadband and lower than the setpoint plus the deadband. Same units as in-use process value.

Pressure control

These settings are applicable if the **Flow / pressure control mode** is set to 'Pressure control' or 'Flow / pressure control'.

Pressure	600	Pressure process value used for pressure control.
Control –		1: Meter pressure
Input		Pressure control based on meter pressure (only
		applicable to run flow control)
		3: Auxiliary pressure 1
		Pressure control based on auxiliary pressure 1
		4: Auxiliary pressure 2
		Pressure control based on auxiliary pressure 2
		5: Custom
		The value that is written to the tag Pressure control -
		Custom process value [bar] will be used. Use this
		option if the pressure value is sent to the flow
		computer over a Modbus communications link or if
		you want to apply user-defined calculations to the
		pressure to be controlled.
Pressure	600	Defines whether the pressure setpoint is absolute
Control -		pressure [bar(a)] or gauge pressure [bar(g)] (i.e. relative
Units		to the atmospheric pressure).
		1: Absolute
		2: Gauge
Pressure	600	Proportional gain for pressure control
Control		Controller output = Proportional gain * Actual error.
Proportional		Proportional Gain a= 100 / Proportional Band
Gain (P)		
Pressure	600	Integral gain for pressure control
Control		Integral gain = 1 / [Seconds per repeat], e.g. value of
Integral gain		0.02 means 1 repeat per 50 seconds.
(1)		
Pressure Control Full scale value	600	Highest pressure that can be achieved by controlling
		the valve.
		Equals the pressure process value that corresponds to
		100% control output (20 mA) if Pressure Control -
		Reverse mode is disabled, or 0% control output (4 mA)
		if Pressure Control - Reverse mode is enabled.
		Units are [bar(a)] or [bar(g)] depending on the Pressure
	606	Control - Units.
Pressure	600	Lowest pressure that can be achieved by controlling the
Control Zero		valve.
scale value		Equals the pressure process value that corresponds to
		0% control output (4 mA) if Pressure Control - Reverse
		mode is disabled, or 100% control output (20 mA) if
		Pressure Control - Reverse mode is enabled.
		Units are [bar(a)] or [bar(g)] depending on the Pressure
		Control - Units.

Pressure	600	Enables or disables reverse control mode for pressure
Control		control.
Reverse		0: Disabled
mode		Select 'Disabled' if the pressure drops when the valve closes.
		1: Enabled
		Select 'Enabled' if the pressure drops when the valve opens.
Pressure	600	Deadband on pressure control. Avoids that the control
control		valve is constantly moving, even though the actual
Deadband		pressure is very close to the setpoint.
		Pressure control will be suspended if the pressure is
		higher than the setpoint minus the deadband and lower
		than the setpoint plus the deadband.
		Units are [bar(a)] or [bar(g)] depending on the Pressure
		Control - Units.
Pressure	600	If Flow / pressure control mode is 'Pressure control'
Control		this is the setpoint which the control loop will try to
Setpoint		achieve, provided that Manual control is disabled.
		If Flow / pressure control mode is 'Flow / Pressure
		control' this is the pressure limit value that is used to
		switch from flow control to pressure control.
		Units are [bar(a)] or [bar(g)] depending on the Pressure Control - Units .
Pressure	600	Only applicable if Flow / pressure control mode = 'Flow
Limit Mode		/ pressure control'.
		1: Maximum
		The pressure control setpoint is regarded as
		maximum pressure: The flow computer switches
		from flow control to pressure control if the pressure
		rises above the setpoint / limit value.
		2: Minimum
		The pressure control setpoint is regarded as
		minimum pressure: The flow computer switches from
		flow control to pressure control if the pressure drops
		below the setpoint / limit value.

Setpoint clamping

Flow control - Upward	600	The in-use flow setpoint will not be allowed to increase faster than this limit per second.
setpoint		If a higher setpoint is entered, the actual setpoint for
clamp rate		the PID controller will ramp up with the specified clamp
(/s)		rate until the setpoint value is reached.
		A value of 0 disables this function
Flow control	600	The in-use flow setpoint will not be allowed to decrease
- Downward		faster than this limit per second.
setpoint		If a lower setpoint is entered, the actual setpoint for the
clamp rate		PID controller will ramp down with the specified clamp
(/s)		rate until the setpoint value is reached.
		A value of 0 disables this function
Pressure	600	The in-use pressure setpoint will not be allowed to
control -		increase faster than this limit per second.
Upward		If a higher setpoint is entered, the actual setpoint for
setpoint		the PID controller will ramp up with the specified clamp
clamp rate		rate until the setpoint value is reached.
(/s)		A value of 0 disables this function
Pressure	600	The in-use pressure setpoint will not be allowed to
control -		decrease faster than this limit per second.
Downward		If a lower setpoint is entered, the actual setpoint for the
setpoint		PID controller will ramp down with the specified clamp
clamp rate		rate until the setpoint value is reached.
(/s)		A value of 0 disables this function

Control output settings

		-
Bumpless transfer	600	Controls bumpless transfer from auto to manual mode by setting the initial manual ouput % equal to the current valve open %. When switching from auto to manual mode while bumpless transfer is enabled, the valve effectively freezes at its position at the moment of switching.
		This avoids unexpected valve movements when switching from auto to manual mode. 0: Disabled 1: Enabled

Control output maximum limit	600	The control output % will not be allowed to go above this limit [%]
Control output minimum limit	600	The control output % will not be allowed to go below this limit [%]
Control output upward slew rate	600	The control output will not be allowed to increase faster than this limit [%/sec].
Control output	600	A value of 0 disables this function
Control output downward slew	600	The control output will not be allowed to decrease faster than this limit [%/sec]
rate		A value of 0 disables this function
Idle output %		Value used for control output when the PID permissive flag is not set. This can f.e. be used to shut down the control valve if the permissive is withdrawn.

Analog output settings

Analog	600	Module to which the analog control output signal is
output		connected.
module		-1: Local module means the module of the meter run itself
Analog	600	Channel number for the analog control output signal.
output		
channel		
Permissiv	e setti	ngs
Withdraw	60	
permissive o	n	'Flow / pressure control'.
flow meter		Withdraw PID permissive in case of a meter failure
error		(comms fail, measurement fail, etc.) or data invalid
		status. The output is forced to the 'Idle output %'.
		0: No
		1: Yes
Withdraw	60	0 Only applicable if control mode is 'Pressure control'
permissive o	n	or 'Flow / pressure control'.
pressure		Withdraw PID permissive in case of a pressure
transmitter f	ail	transmitter failure. The output is forced to the 'Idle
		output %'.
		0: No
		1: Yes
Withdraw	60	0 Withdraw PID permissive if the 'valve open' status
permissive if	:	from the inlet valve is not received. The output is
inlet valve no	ot	forced to the 'Idle output %'.
open		This avoids that flow control is fully opening the
		control valve while there's no flow because the inlet
		valve is not open.
		0: No
		1: Yes
Withdraw	60	0 Withdraw PID permissive if the 'valve open' status
permissive if		from the outlet valve is not received. The output is
outlet valve r	not	forced to the 'Idle output %'.
open		This avoids that flow control is fully opening the
		control valve while there's no flow because the
		outlet valve is not open.
		0: No
		1: Yes
Use custom	PID 60	5
permissive		logic. If enabled the PID permissive will be
		withdrawn (and the output will be forced to
		the 'Idle output %') when a 0 is written to the
		'Custom PID permissive'.
		0: No
Custor: DID		1: Yes
Custom PID	60	0 Message shown if custom permissive is Off.
permissive		
message		Allows for croating suctors la siste switch
Use PID activ	/e 60	0 Allows for creating custom logic to switch off PID control. If enabled the PID permissive
flag		•
		will be withdrawn (and the output will be forced to the 'Idle output %') when a 0 is
		i orceu to the rule output % J When a U is
		written to the 'PID active flag'
		written to the 'PID active flag'. 0: No

Grab size

Sampler control

The application supports control of a sampler.

Single can and twin can samplers are supported. Several algorithms can be used for determining the time or metered volume between grabs.

Display \rightarrow Configuration, Sampler control

With <x> the module number of the meter run

The following configuration settings are available for each sampler:

Sampler	600	Determines whether the control of the sampler is		
control		enabled or not. Disabling control inhibits the output of		
		grab commands (pulses) and hides the operator		
		sampling displays.		
		0: Disabled	Can full	600
		1: Enabled	indication	
Sampled	600	Used for Flow proportional sampling methods	method	
flow		only.		
		Determines which flow value is used as a basis for		
		sampling.		
		0: Station		
		The sampler is installed on the station inlet or		
		outlet header. The station gross volume		
		totalizer is used as a basis for sampling.		
		1-8: Run 1 - 8		
		The sampler is installed on a specific run (1-8).		
		The run gross volume totalizer is used as a		
		basis for sampling.		
Sampled	600	Only applicable to two-directional applications (Reverse		
flow		totals enabled on display Configuration, Overall setup,		
direction		Common settings).		
		Determines whether the sampler will be active for both		
		flow directions, or only for one specific flow direction.		
		1: Both directions	C	
		2: Forward only	Sample op	tions
		3: Reverse only	Auto-switch	600
Sampling	600	The method to control the sample pulses, either flow- or	can on can	
method		time-proportional.	full	
		1: Flow (fixed value)		
		Flow proportional method based on setting Volume		
		between grabs fixed value. Gives a sample pulse each		
		time this volume has been metered.		
		2: Flow (estimated volume)		
		Flow proportional method where the required volume		
		between grabs is calculated from the setting		
		Expected total volume, the can volume and the Grab		
		size. The can will be full to the target level when the		
		estimated volume has been metered.		
		4: Time (fixed value)		
		Time proportional method based on setting Time	Alarm sett	inas
		between grabs fixed value. Gives a sample pulse each	Can at	600
		time this time has passed.	target level	600
		5: Time (estimated end time)	alarms	
		Time proportional method with the time between	didiffis	
		grabs calculated from setting Expected end time for		
		sampling, the can volume and the Grab size. The can		
		will be full to the target level at the expected end time.	-	
		6: Time (period)	Can at	600
		Time proportional method with the time between	maximum	
		grabs calculated from setting Can fill period [hours],	level alarms	
		the can volume and the Grab size. The can will be full		
		to the target level when the can fill period has passed.		
			Sample	600

Grab size	600	Volume of a sampler grab [cc].
Can size		
Can volume	600	Can storage capacity [cc]. This is the volume which
		corresponds to '100% full'.
Can target	600	The target level [%] to fill the can. Used to switch over
fill		to the other can if Auto-switch on can full and the can
percentage		is empty. In all other cases a 'Sampler can <x> at target</x>
		level' alarm is raised, but sampling remains active until the can maximum fill percentage is reached.
Can	600	The maximum fill level [%] of the can. If this level is
maximum	000	reached, a 'Sampler can <x> at maximum level' alarm is</x>
fill		raised and sampling is stopped.
percentage		
Can fill level	600	The method to read or estimate the can fill level.
indication		1: Number of grabs
method		The sampler provides no fill level indication. The
		flow computer accumulates the number of grabs
		and uses this to estimate the can fill level.
		3: Analog input
		The sampler provides an analog input that indicates the can fill level (0-100%).
		This fill level is also used to derive the 'can at target
		level' alarm.
Can full	600	The method used to derive the can full status / 'can at
indication		maximum fill level' alarm.
method		1: Number of grabs
		The flow computer only uses the accumulated
		number of grabs to derive the can full status.
		2: Digital input
		The sampler provides a 'can full' digital signal. The
		can is considered to be full and a 'can at maximum
		level' alarm is generated if the digital input is high or if the accumulated number of grabs indicates
		that maximum fill level has been reached.
		3: Analog input
		The sampler provides an analog input that indicates
		the can fill level (0-100%). The can is considered to
		be full and a 'can at maximum level' alarm is
		generated if the analog input or the accumulated
		number of grabs indicates that the maximum fill
		level has been reached.
Complete	Har-	
Sample op		
Auto-switch	600	Only applicable to twin can samplers.
can on can full		Not available if Sampling method is 'Time (estimated
i ull		end time)' 0: Disabled
		When the target fill level is reached, sampling goes
		on until the maximum fill level is reached and then
		store

stops. 1: Enabled When the target fill level is reached, sampling switches over to the other can, provided that it is enabled and empty. If the can is disabled or not empty sampling goes on until the maximum fill level is reached and then stops.

Can at target level alarms	600	Enables or disables the can at target level alarms. If disabled, the target level is still used in the logic to switch to the other can (if applicable), but no alarm will be activated or logged. 0: Disabled 1: Enabled
Can at maximum level alarms	600	Enables or disables the can full alarms. If disabled, the can full status is still used in the logic to stop sampling, but no alarm will be activated or logged. 0: Disabled 1: Enabled
Sample pulse alarms	600	Enables or disables both the 'sampler overspeeding' alarm (indicating that more pulses are sent to the sampler than the sampler can handle) and the 'sample

grabs lost' alarm (indicating that the pulse output
reservoir is overflowing).
0: Disabled
1: Enabled

Pulse output settings

Sample pulse output module	600	Module to which the sample strobe is physically connected.
Sample pulse output	600	Pulse output number on the specified module that is used for the sample strobe.
number		1: Pulse output 1
		2: Pulse output 2
		3: Pulse output 3
		4: Pulse output 4
Sample pulse output duration	600	The duration of the sample pulses [s]
Minimum time between grabs	600	Minimum time [s] between grabs. Used to determine the maximum pulse output frequency. If more pulses are requested than the maximum frequency allows for, then pulses are accumulated in the pulse reservoir.
Max. number of outstanding samples	600	The maximum number of pulses to be buffered in the pulse reservoir. Additional pulses will be lost (raises the 'Grabs lost' alarm).
Sampler overspeed alarm limit	600	If the number of pulses accumulated in the pulse reservoir reaches this limit, then the 'Sampler overspeeding' alarm is raised.

Can settings

These settings are applicable for both cans if **Can fill level indication method** is set to 'analog input' or if the **Can full indication method** is set to 'digital input' or 'analog input'.

Can fill indication module	600	The module to which the can fill level / can full indication signal is physically connected
Can fill indication channel	600	The channel number of the can fill level / can full indication signal. In case of a digital input this is the digital channel number (1-16). In case of an analog input this is the analog input channel (1-6).
Can select	tion	
Can selection digital output	600	Disables or enables a digital output for can selection. 0: Disabled No can selection output used/ 1: Enabled The can selection is sent to the sampler through a digital output: (output low=can 1, output high=can 2)
Can selection digital output module	600	The module to which the can selection output is physically connected
Can selection digital output channel	600	The channel number on the selected module to which the can selection output is physically connected (116)

Proving

The Flow-X supports master meter proving.

The proving configuration displays are only available for the following FC types:

- Proving / run
- Station / proving / run
- Station / proving
- Proving only

Master meter proving

The Flow-X supports master meter proving, in which the readings of two meters that are set in serial configuration (the meter on prove and the master meter) are compared in order to calculate a correction factor (Meter Factor) for the meter on prove.

In the Flow-X, the meter on prove and the master meter are regarded as two meters that are part of a station. Each meter is connected to its own module.

On an X/P flow computer the prove logic and calculations are running on the panel module

, or on one of the run modules (meter on prove or master meter; FC type: 'proving / run'), or by a third module (dedicated prove module of type 'proving only').

The proving flow computer can contain a local run and one or more remote runs. It communicates to its remote run flow computers through Modbus to gather the process data that's needed to do the proving calculations, to give the commands to start / stop the prove and to write the prove results.

In order to be able to communicate to the remote run flow computer(s), the proving flow computer must have a 'Connect to remote run' Modbus driver configured for every individual remote run flow computer (in Flow-Xpress 'Ports and Devices').

On the remote run flow computer(s) the 'Connect to remote station' Modbus driver has to be enabled (in Flow-Xpress 'Ports and Devices').

Additional station functionality (like station totals or a station gas chromatograph) may be enabled on the prover flow computer (FC types: 'station / proving' or 'station / proving / run').

Master meter proving based on totalizers

Master meter proving can be based on pulses or on totalizers. In case of master meter proving based on totalizers, communication between the modules is entirely by Modbus and

no separate connections have to be made to pass through the meter pulses or to send a prove start / stop command:

X/P Master meter totals

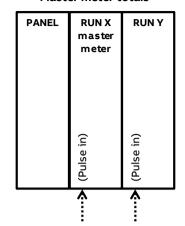


Figure 5: Master meter proving based on totalizers on an X/P flow computer.

Remote Master meter totals

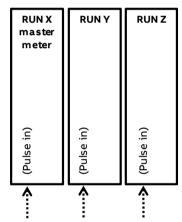


Figure 6: Master meter proving based on totalizers on a proving flow computer with remote runs.

Master meter proving based on pulses

In case of master meter proving based on pulses, a prove start command is used to start / stop pulse counting on the master meter module and meter module. This command ensures that the meter module and master meter module start / stop pulse counting at exactly the same time.

On an X/P flow computer the prove start output has to be connected to a digital input on the module of each meter that can be proved and on the master meter module. The command output digital channel has to be configured as 'Digital output', the inputs as 'Prove detector' (display: IO, module <x>, Configuration, Digital IO assignment).

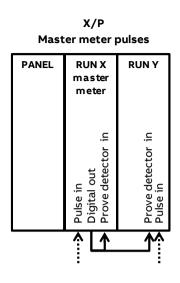


Figure 7: Master meter proving based on pulses on an X/P flow computer.

In case of **master meter proving based on pulses** with a **prover flow computer** using the **'remote run'** functionality, the start / stop command output has to be connected to a digital input on the prover flow computer only. In this case the prover flow computer reads both the meter pulses and the master meter pulses. The command output digital channel has to be configured as 'Digital output', the input as 'Prove detector' (display: IO, module <x>, Configuration, Digital IO assignment).

The figures below show the connections for a combined **'proving** / **run'** flow computer that holds the master meter (the master meter is a local run and the meter on prove is a remote run) and for a dedicated **'proving only'** flow computer that holds no local meter (both the master meter and the meter on prove are remote runs).

Remote Master meter pulses

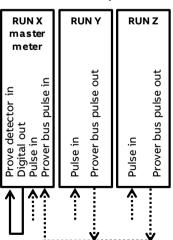


Figure 8: Master meter proving based on pulses on a prover flow computer with remote runs; master meter as local run on the prover flow computer.

Remote Master meter pulses Dedicated prover FC

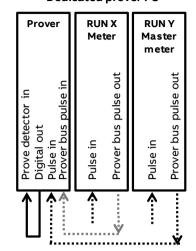


Figure 9: Master meter proving based on pulses on a prover flow computer with remote runs; master meter on separate module.

The prover flow computer decides which remote meter flow computer has to forward its input pulses to the prover bus and enables the 'prover bus pulse output' of this flow computer accordingly.

Master meter proving setup

Display \rightarrow Configuration, Proving, Master meter proving

These settings are available if the **Prover type** is set to 'Master meter proving'.

Master 500 meter number	Number of the meter (in the proving flow computer) that is used as master meter. In case of a Flow-X/P, the meter number corresponds to physical position of the related flow module in the proving flow computer.	
		The selected master meter may be a local run or a remote run.
Master meter	1000	Defines whether master meter proving is based pulses or on totalizers.
proving		1: Pulses
type		The pulses from both the meter on prove and the master meter are counted. The pulse counts are used to calculate the prove volumes, from which the meter factor is calculated. This option can only be used if both meters have a pulse output.
		2: Totalizers The gross volume or mass totalizers from both the meter on prove and the master meter are simultaneously latched at the start of the prove and at end of the prove. From these totalizers prove volumes for the meter on prove and the master meter are calculated and from these the meter factor is calculated. This option is also available for meters without pulse output.

Prove size

Master	1000	Determines whether the prove size is specified as prove
meter		duration or as volume / mass.
prove size		1: Prove volume / mass

type		If the meter on prove is a volumetric meter, the prove size is specified as volume [m3]. If the meter on prove is a mass meter, the prove size is specified as mass [tonne].
		2: Prove time
		The prove size is specified as time [min].
Volume / mass per	500	Only applicable if Master meter prove size type is set to 'Prove volume / mass'.
prove run		Volume or mass to be proved. The prove run is completed when this volume or mass is reached. Unit [m3] in case of a volume flow meter, [tonne] in case of a mass flow meter.
Time per prove run	500	Only applicable if Master meter prove size type is set to 'Prove time'.
		Duration of the prove. The prove run is completed when this time [minutes] has passed.

Prove start command output

If the master meter flow computer is a multi module flow computer (X/P), the following settings are used to specify by which module the pulses are read.

Prove start 1000	Only applicable if the Master meter proving type is set to
DO	'Pulses'
module	Number of the module to which the Prove start digital output signal in physically connected.
Prove start 1000	Only applicable if the Master meter proving type is set to
DO	'Pulses'
channel	Channel number of the Prove start digital output signal.

Remote meter pulses

If the **Master meter proving type** is set to 'Pulses' and the meter on prove is on a remote module, the meter pulses have to be passed through from the meter module to the flow computer that runs the master meter prove logic. For that purpose on the meter module a digital channel has to be configured as 'Prover bus pulse out A' and a second digital channel has to be configured as 'Prover bus pulse out B'. This output duplicates the meter pulses

Remote meter	1000	Only applicable if the meter on prove is a remote meter while the Master meter proving type is set to 'Pulses'.
pulse input module		In case of master meter proving of a remote meter the pulses from the meter on prove have to be passed through from the meter flow computer to the proving flow computer. This setting defines on which module on the prove flow computer the remote meter pulses are coming in. On the specified module the digital channel though which the pulse is coming in must be configured as 'Pulse input A'. Optionally also a 'Pulse input B' can be configured,
Remote master meter pulse input module	1000	which is used as a backup in case pulse input A fails. Only applicable if the master meter is a remote meter while the Master meter proving type is set to 'Pulses'. In case of master meter proving with a remote master meter the pulses from the master meter have to be passed through from the master meter flow computer to the proving flow computer. This setting defines on which module on the proving flow computer the remote meter pulses are coming in. On the crocified module the digital chapped though which
		On the specified module the digital channel though which the master meter pulse is coming in must be configured as 'Pulse input A'. Optionally also a 'Pulse input B' can be configured, which is used as a backup in case pulse input A fails.

Operational settings

	Q
\sim	Sa .

Display \rightarrow Configuration, Proving, Operational

The following settings are available for all types of proving (ball prover, compact prover, small volume prover, master meter proving).

Maximum nr of	500	The maximum number of prove runs allowed to achieve
runs		sufficient consecutive runs within the repeatability limit.
		If it is not possible to achieve sufficient consecutive
		runs within the remaining prove runs, the prove
		sequence may be aborted before the maximum nr. of
Daccas par rup	500	runs is reached. Only applicable to Brooks compact provers and
Passes per run	500	Calibron / Flow MD small volume provers. Not
		applicable to master meter proving.
		The number of passes per run.
Required	500	Required number of consecutive runs within the
successful		repeatability limit before the prove sequence is
runs		completed successfully.
Double	500	Determines whether or not double-chronometry
chronometry		method of pulse interpolation is applied in accordance
		with API MPMS 4.6.
		0: Disabled
		1: Enabled
		API requires that pulse interpolation is performed when
		less than 5000 pulses are acquired within a single prove pass.
		This feature is typically enabled for compact provers
		and disabled for large volume pipe provers and master
		meter proving.
Run repeatak	oility	
Repeatability	500	Determines whether the repeatability calculation is
test method		based on pulse count or on the meter factor. Achieving
		repeatability based on meter factor might be more
		difficult to achieve, because the meter factor not only
		depends on the pulse count but also on the
		temperature, pressure, density etc. Repeatability is calculated as (max - min) / min * 100%.
		1: Pulse count
		2: Meter factor
		Setting not available for master meter proving
		(Repeatability test method is automatically set to
		'Meter factor').
Run	500	The method to check whether sufficient consecutive
repeatability	500	runs are within the required repeatability limit.
	500	runs are within the required repeatability limit. 1: Fixed
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'.
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A)
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been
repeatability	500	 runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A.
repeatability	500	 runs are within the required repeatability limit. Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a
repeatability	500	 runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A.
repeatability	500	 runs are within the required repeatability limit. Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 3 0.02 4 0.03
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 0.02 4 0.03 5 0.05
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 3 0.02 4 0.03 5 0.05 6 0.06
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 0.02 4 0.03 5 0.05 6 0.06 7 0.08
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 0.02 4 0.03 5 0.05 6 0.06 7 0.08 8 0.09
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 0.02 4 0.03 5 0.05 6 0.06 7 0.08 8 0.09 9 0.10
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 0.02 4 0.03 5 0.05 6 0.06 7 0.08 8 0.09 9 0.10
repeatability	500	runs are within the required repeatability limit. 1: Fixed The prove sequence is completed successfully when the Required successful runs have been performed consecutively within the 'Run repeatability fixed limit'. 2. Dynamic (API 4.8 appendix A) The prove sequence is completed successfully when at least the Required successful runs have been performed consecutively within the repeatability limit that is in accordance with API 4.8 appendix A. API 4.8 app. A defines the repeatability limit as a function of the number or runs. Nr of runs Repeatability limit [%] 3 0.02 4 0.03 5 0.05 6 0.06 7 0.08 8 0.09 9 0.10 10 0.12

0	2
в	3

Auto-	500	Determines whether or not a new meter factor is
implement		implemented automatically at the end of a successful
new MF		prove sequence, provided that the repeatability criteria
		are met and the meter factor tests have passed.
		0: No
		1: Yes
F manual	500	The maximum allowable time [s] to manually accept a new
cept		meter factor after the prove sequence has ended
meout		successfully, provided that the repeatability criteria are
	met and the meter factors tests have passed. If the	
		operator does not accept the new meter factor within this
		time limit, then the new meter factor is rejected
		automatically

Prove permissive

A prove can only be started if the prove permissive is ON. Furthermore, a prove is aborted if the permissive switches to OFF while the prove sequence is active.

The prove permissive is ON if the following conditions are met:

- Communication to meter flow computer OK (when proving a remote run)
- Communication to master meter flow computer OK (in case of a remote master meter)
- Custom prove permissive condition (optional)

Use proving permissive custom condition	1000	Determines whether or not the prove permissive custom condition is taken into account. If set to 'Yes' the prove permissive custom condition (to be written through Modbus or by a 'custom calculation') must be ON, otherwise the sequence can't be started or is aborted.
		0: No
		1: Yes

Prove integrity

A prove is aborted if the prove integrity switches to OFF while a prove is active.

The prove integrity is ON if the following condition is met:

• Custom prove integrity condition (optional)

Use prove integrity custom condition	1000	Determines whether or not the prove integrity custom condition is taken into account. If set to 'Yes' the prove integrity custom condition (to be written through Modbus or by a 'custom calculation') must be ON while proving, otherwise proving is aborted.
		0: No
		1: Yes

Stability check

Display \rightarrow Configuration, Proving, Stability check

Initial stability check	1000	Determines whether or not the initial stability check is performed. If enabled, the prove sequence only starts if the initial stability check has passed successfully.
		During the initial stability check the following process values are monitored: • Prover inlet temperature

		Prover outlet temperature
		Meter temperature
		Prover inlet pressure
		Prover outlet pressure
		Meter pressure
		Flow rate
		In case of master meter proving the following
		process values are monitored:
		Meter temperature
		Master meter temperature
		Meter pressure
		Master meter pressure
		Flow rate
		The initial stability check passes as soon as all the
		process values do not change more than their
		corresponding limit during the required
		stabilization sample time (default 5 seconds).
		If the stability check has not passed during the max.
		stabilization time (default 30 sec.), then the prove
		sequence is aborted.
Prove sequence	1000	Determines whether or not the deviation between:
stability check		
		Prover temperature (average) and meter
		temperature
		Prover pressure (average) and meter pressure
		Or in case of master meter proving:
		Master meter temperature and meter
		temperature
		Master meter pressure and meter pressure
		is checked during proving.
		The check is only performed when the sphere /
		piston is between the detectors (i.e. in the
		calibrated volume).
Max.	1000	The maximum time [s] allowed for the initial stability
stabilization		check (default 30 seconds). If the stability check has
time		not passed within this time, the prove sequence is
		aborted.
Stabilization	1000	The sample time [s] for the initial stability check. The
sample time		initial stability check passes as soon as the process
		values do not change more than their corresponding
		limit during this time.
Temperature	1000	The maximum allowable temperature fluctuation
change limit		[°C] during the initial stability check
Pressure	1000	The maximum allowable pressure fluctuation [bar]
change limit		during the initial stability check
Flow rate	1000	The maximum allowable relative flow rate
change limit		fluctuation [%] during the initial stability check
Max.	1000	The maximum allowable deviation [°C] between the
temperature		meter temperature and the prover temperature
•		(average of inlet and outlet) c.q. master meter
deviation		(a. a. a. g. a. a. met and a dated) equinaster meter
deviation prover/meter		temperature
prover/meter	1000	temperature The maximum allowable deviation [bar] between the
prover/meter Max. pressure	1000	The maximum allowable deviation [bar] between the
prover/meter	1000	

Meter factor tests

After completion of the last prove run, a number of tests is performed on the newly proved meter factor. The new factor is rejected automatically if one or more of these tests fail.

Meter factor limit test

Meter factor	500	Enables or disables the 'Meter factor limit test'.
limit test		0: Disabled

		1: Enabled
		The new meter factor is rejected if it is higher than the Meter factor high limit or lower than the Meter factor low limit , provided that the Meter factor limit test is enabled.
Meter factor high limit	500	High limit [-] for the meter factor limit test
Meter factor low limit	500	Low limit [-] for the meter factor limit test

Previous meter factor test

Previous 500	500	Enables or disables the 'Previous meter factor test'.
MF test		0: Disabled
		1: Enabled
		The new meter factor is rejected if the deviation from the meter's previous proved meter factor exceeds the Previous MF deviation limit , provided that the Previous MF test is enabled.
Previous MF deviation limit	500	Deviation limit [%] for the previous MF test

Historical meter factor test

Historical avg MF test	500	Enables or disables the 'Historical average meter factor test'.
		0: Disabled
		1: Enabled
		The application keeps track of the last 10 proved
		meter factors for each flow meter.
		The new meter factor is rejected if the deviation
		from the average of the last Nr of historical MF
		meter factors exceeds the Historical avg MF
		deviation limit, provided that the Historical
		average MF test is enabled.
Historical avg MF	500	Deviation limit [%] for the historical average MF
deviation limit		test
Nr of historical MF	500	Number of historical meter factors (1-10) to be
avg		used for the historical average MF test

Base curve meter factor test

Base curve 5 MF test	500	This test is only applicable if meter factor curve interpolation is enabled for the meter on prove.
		The 'Base curve MF test' checks if the deviation between the proved meter factor and the 'meter factor determined from the meter factor curve at the proved
		flow rate' is not larger than the 'Base curve MF deviation limit'. The meter factor is rejected if the test fails.
Base curve MF deviation limit	500	Deviation limit [%] for the base curve MF test

Prove report

The 'Prove report' display contains the settings that define the number of decimal places for the meter factor and the intermediate correction factors. The display also contains settings that determine if the API truncating and rounding rules are applied for the calculation.

Display \rightarrow Configuration, Proving, Prove report

Print accepted	1000	Determines whether the prove report contains the results of all runs, or only the results of the accepted
runs only		runs.
		0: Disabled
		1: Enabled

Decimal resolution

Meter factor decimal places proving	1000	Number of decimal places to which the (final) meter factor is rounded
Volume / mass total decimal places proving	1000	Number of decimal places to which the metered and proved volumes / masses are rounded.
CCF (CTPL) decimal places proving	1000	Number of decimal places to which the combined correction factors for the prover (CCFp) and the meter (CCFm) are rounded.

Meter runs

This display page gives an overview of the meter runs that are involved in proving.

Display \rightarrow Configuration, Proving, Meter runs

Run <x>

Remote run device nr.	1000	Device nr. of the 'Remote Run' flow computer as defined in Flow-Xpress 'Ports & devices'.
		If a valid 'Remote run' device nr. is selected (i.e. if in Flow-Xpress this device nr. has been assigned to a remote run communication device), the run will be designated as 'Remote'.
		If 'No Device' is selected, the run is either designated as 'Local' or as 'None', depending on the physical flow computer hardware.

System time deviation

These settings are only applicable if the flow computer is communicating to one or more remote run flow computers.

Remote run max. system time deviation	1000	If the system time of a remote run module differs from the system time of the station module by more than this amount [s], then a 'System time out of sync alarm' is generated.
Delay for system time out of sync alarms	1000	System time out of sync alarms only become active after the deviation has been larger than the 'max. deviation' during the delay time [s].

Metrological settings

The Flow-X features accountable and non-accountable totalizers, in order to split the metered amount into an accountable amount (measured while there was no accountable alarm) and a non-accountable amount (measured while there was an accountable alarm).

This functionality is enabled by the setting **MID compliance** on the display: Configuration, Overall setup, Common settings.

If there is no accountable alarm then the accountable totalizers are active and the non-accountable totalizers are inactive. In case of an accountable alarm the non-accountable totalizers are active and the accountable totalizers are inactive. The normal totalizers are active regardless of the accountable alarm.

Display \rightarrow Configuration, Metrological, Run <x>

with <x> the module number of the meter run

This display is only visible if **MID compliance** (Configuration, Overall setup, Common settings) is enabled.

Flow rate

Meter minimum accountable	1000 le	Low range value (minimum allowable flow rate) of the flow rate. Unit [m3/hr] in case of a volume flow meter, [tonne/hr] in case of a mass flow meter.
flow rate		If the flow rate is below this value then the 'Flow range accountable alarm' is raised.
Meter 100 maximum accountable flow rate	1000	High range value (maximum allowable flow rate) of the flow meter. Unit [m3/hr] in case of a volume flow meter, [tonne/hr] in case of a mass flow meter.
		If the flow rate is above this value then the 'Flow range accountable alarm' is raised.

Temperature

Minimum	1000	Minimum allowable temperature [°C].
accountable		If the temperature is below this value then the
temperature		'Temperature accountable alarm' is raised.
Maximum	1000	Maximum allowable temperature [°C].
accountable		If the temperature is above this value then the
temperature		'Temperature accountable alarm' is raised.

Pressure

Minimum	1000	Minimum allowable pressure [bar(a)].
accountable		If the pressure is below this value then the 'Pressure
pressure		accountable alarm' is raised.
Maximum	1000	Maximum allowable pressure [bar(a)].
accountable		If the pressure is above this value then the 'Pressure
pressure		accountable alarm' is raised.

5 Maintenance mode

Maintenance mode is a special mode of operation intended for testing the flow computer functionality, typically its calculations. Maintenance mode can be enabled and disabled for each meter run separately.

Maintenance mode is the same as normal operation mode except that in Maintenance Mode all the custody transfer totals are inhibited. Instead flow is accumulated in separate Maintenance totals. Optionally the maintenance totals automatically reset each time maintenance mode is enabled (setting **Reset maint. totals on entering maint. mode** on display: Configuration, Common settings).

A permissive flag is used to enter and exit maintenance mode. By default the flag is always 1, i.e. it is always permitted to enter/exit maintenance mode. However the permissive flag may be controlled by custom-made logic through 'User Calculations' in Flow-Xpress, e.g. to inhibit entering/exiting maintenance mode if the meter is active.

Optionally, process alarms and calculation alarms are disabled, when in maintenance mode (setting **Disable alarms in maintenance mode** on display: Configuration, Common settings).

Maintenance mode should be disabled for normal operation.

A 'Maintenance mode enabled' alarm is generated when the meter is in maintenance mode.

Display →Maintenance mode, Run <x>

with <x> the number of the flow module that controls the flow meter

Enable maint mode	1000	Enter maintenance mode. Only allowed if Maint mode switch permissive is ON.
Disable	1000	Exit maintenance mode.
maint mode		Only allowed if Maint mode switch permissive is ON.

6 Calculations

This chapter specifies the main calculations performed by the Gas Metric application. The different parameters are accessible through the display menu.

Calculations in compliance with a measurement

standard, such as ISO5167 and AGA-8, are not specified in this manual. Please refer to the standards for more details on these calculations.

Densitometer calculations

The flow computer supports the following type of densitometers:

- Solartron
- Sarasota
- UGC

Solartron densitometers

The flow computer provides the option to calculate the density from a frequency input signal provided by a Solartron 7810, 7811 or 7812 gas densitometer and to correct it for temperature and velocity of sound effects

The calculations are in accordance with the following vendor documentation:

- 78125010 'Solartron 7812 Gas Density Transducer Manual', 2001.
- 78125040 Rev. C, 'Micro Motion 7812 Gas Density Meter', October 2007.

$$\rho_i = K_0 + K_1 \cdot \tau + K_2 \cdot \tau^2$$

Equation 6-1: Uncorrected density (Solartron)

ρ	Uncorrected density	kg/m3
Ko	Obtained from the calibration certificate	-
ζ1	Obtained from the calibration certificate	-
(2	Obtained from the calibration certificate	-
c	The time period from densitometer	μs

$$\rho_{t} = \rho_{i} \cdot [1 + K_{18} \times (T - T_{R})] + K_{19} \times (T - T_{R})$$

Equation 6-2: Density corrected for temperature (Solartron)

Density corrected for temperature	kg/m3
Obtained from the calibration certificate	-
Obtained from the calibration certificate	-
Density temperature	°C
Densitometer reference temperature	°C
	Obtained from the calibration certificate Obtained from the calibration certificate Density temperature

$$\rho_{pt} = \rho_t \times [1 + (K_{20} \times P_f)] + (K_{21} \times P_f)$$

$$K_{20} = K_{20A} + (K_{20B} \times P_f)$$

$$K_{21} = K_{21A} + (K_{21B} \times P_f)$$

Equation 6-3: Density corrected for Pressure (Solartron)

ρ_{pt}	Density corrected for pressure and temperature	kg/m3
ρt	Density corrected for temperature	kg/m3
K ₁₈	Obtained from the calibration certificate	-
K ₁₉	Obtained from the calibration certificate	-
K _{20A}	Obtained from the calibration certificate	-
К20в	Obtained from the calibration certificate	-
K _{21A}	Obtained from the calibration certificate	-
K _{21B}	Obtained from the calibration certificate	-
Pf	Density pressure	bar(g)

$$\rho_{VOS} = \rho_t \left[1 + \frac{K_3}{(\rho_t + K_4)} \cdot \left(Kc - \frac{G}{T + 273} \right) \right]$$
$$Kc = \frac{Cc}{T_c + 273}$$

Equation 6-4: Density corrected for velocity of sound (Solartron)

ρvos	Density corrected for temperature and VOS	kg/m3
Kз	Obtained from the calibration certificate	-
K4	Obtained from the calibration certificate	-
Kc	Calibration gas constant from the calibration certificate	-
G	G value.	-
	Equals either parameter 'G value' or the ratio of the 'Specific	
	gravity' and 'Ratio of specific heats', depending on	
	parameter 'G value method'	
Т	Density temperature	°C
Cc	Specific Gravity/Ratio of specific heats of calibration gas	-
Tc	Calibration temperature	°C

Sarasota densitometers

$$\rho_{c} = d_{0} \cdot \frac{\tau - \tau_{c}}{\tau_{c}} \cdot \left(2 + K \cdot \frac{\tau - \tau_{c}}{\tau_{c}}\right)$$

$$\tau_{C} = \tau_{0} + T_{COEF} \cdot (T - T_{R}) + p_{COEF} \cdot (p - p_{R})$$

Equation 6-5: Corrected density (Sarasota)

ρς	Corrected density	kg/m3
do	Obtained from the calibration certificate	kg/m3
τ0	Obtained from the calibration certificate	μs
к	Obtained from the calibration certificate	-
do	Obtained from the calibration certificate	-
PCOEF	Obtained from the calibration certificate	µs/bar
TCOEF	Obtained from the calibration certificate	μs/°C
т	Density temperature	°C
T _R	Densitometer reference temperature	°C
р	Density pressure	bar(g)
PR	Densitometer reference pressure	bar(g)
τ _c	Time periodic input corrected for temperature and pressure	μs
τ	Time period from densitometer	μs

UGC densitometers

$$\rho_i = K_0 + K_1 \cdot \tau + K_2 \cdot \tau^2$$

Equation 6-6: Uncorrected density (UGC)

ρι	Uncorrected density	kg/m3
Ko	Obtained from the calibration certificate	-
K1	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	Time period from densitometer	μs

$$\rho_{t} = \rho_{i} + \left[K_{P1} + K_{P2} \cdot \rho_{i} + K_{P3} \cdot \rho_{i}^{2}\right] \cdot \left(P - P_{R}\right) + \left[K_{T1} + K_{T2} \cdot \rho_{i} + K_{T3} \cdot \rho_{i}^{2}\right] \cdot \left(T - T_{R}\right)$$

Equation 6-7: Corrected density (UGC)

ρ_t	Density corrected for temperature and pressure	kg/m3
K _{P1}	Obtained from the calibration certificate	-
K _{P2}	Obtained from the calibration certificate	-
Крз	Obtained from the calibration certificate	-
K _{T1}	Obtained from the calibration certificate	-
K _{T2}	Obtained from the calibration certificate	-
Ктз	Obtained from the calibration certificate	-
Т	Density temperature	°C
TR	Densitometer reference temperature	°C
Р	Density pressure	bar(g)
PR	Densitometer reference pressure	bar(g)

Specific gravity transducer

$$SG = K_0 + K_2 \cdot \tau^2$$

Equation 6-8: Specific gravity (Specific gravity transducer)

SG	Specific gravity	-
Ko	Obtained from the calibration certificate	-
K2	Obtained from the calibration certificate	-
τ	Time period from SG transducer	μs

Density calculations

The density value depends on the type of fluid and the temperature and pressure conditions. The following density related properties are distinguished within the application:

• Observed density

Density at the corresponding density input conditions Meter density

Density at the flow meter conditions

- Base density Density at the reference conditions
- Specific gravity Ratio between the molar mass of the fluid and that of air
- Relative density
 Ratio between the base density of the fluid and that of air

Note: although the terms specific gravity and relative density are often used for the same properties, this context uses the ideal value for the term 'specific gravity' and the real value) for the term 'relative density'. The actual calculations that are used to calculate these properties depend on the way the observed density is measured as defined through parameters 'Observed density input type', 'Base density input type' and 'Meter density input type'. Refer to section 'Configuration', 'Density' for more information on these parameters.

Base density calculation

One of the following calculations applies depending on the **base density input type**:

$$\rho_B = \frac{MM \times p_R}{T_R \times Z_R \times R/100}$$

Equation 6-9: Base density calculation (based on molar mass)

ρв	Base density (i.e. at reference conditions)	kg/sm3
ММ	Molar mass	kg/kmol
Pr	Reference pressure (parameter)	bar(a)
T _R	Reference temperature (parameter)	К
Zв	Base compressibility (i.e. at reference conditions)	-
R	Universal gas constant (parameter)	J/K/mol

$$\rho_B = \rho_i \times \frac{P_R \times T_D \times Z_D}{P_D \times T_R \times Z_R}$$

Equation 6-10: Base density calculation (based on observed density)

ρ _в	Base density (i.e. at reference conditions)	kg/sm3
ρι	Observed density	kg/m3
P _R	Reference pressure (parameter)	bar(a)
PD	Pressure corresponding with observed density	bar(a)
TR	Reference temperature (parameter)	к
TD	Temperature corresponding with observed density	к
ZΒ	Base compressibility (i.e. at reference conditions)	-
ZD	Compressibility at temperature and pressure	-
	corresponding with observed density	

$$\rho_B = \frac{SG \times MM_{air} \times P_R}{T_R \times Z_R \times R/100}$$

Equation 6-11: Base density calculation (based on specific gravity)

ρ _в	Base density (i.e. at reference conditions)	kg/sm3
SG	Specific gravity	-
MMair	Molar mass of air (parameter)	kg/kmol
P _R	Reference pressure (parameter)	bar(a)
TR	Reference temperature (parameter)	К
Zв	Base compressibility (i.e. at reference conditions)	-
R	Universal gas constant (parameter)	J/K/mol

$\rho_{B} = RD \times \rho_{Bair}$

Equation 6-12: Base density calculation (based on relative density)

ρв	Base density (i.e. at reference conditions)	kg/sm3
RD	Relative density	-
ρ_{Bair}	Base density of air (parameter)	kg/sm3

Meter density calculation

One of the following calculations applies depending on the **meter density input type**:

$$\rho = \rho_{B} \times \frac{P \times T_{R} \times Z_{B}}{P_{R} \times T \times Z}$$

Equation 6-13: Meter density calculation (based on base density)

ρ	Density at the (upstream) flow meter conditions	kg/m3
Рв	Base density	kg/sm3
Р	Pressure at the flow meter	bar(a)
	For differential pressure flow devices the upstream	
	pressure is applied	
P _R	Reference pressure (parameter)	bar(a)
т	Temperature at the flow meter	К
	For differential pressure flow devices the upstream	
TR	Reference temperature (parameter)	К
z	Compressibility at the (upstream) flow meter conditions	-
Ζв	Base compressibility (i.e. at reference conditions	-

$$\rho = \rho_i \times \frac{P \times T_D \times Z_D}{P_D \times T \times Z}$$

Equation 6-14: Meter density calculation (based on observed density)

ρ	Density at the (upstream) flow meter conditions	kg/m3
ρι	Observed density	kg/m3
Ρ	Pressure at the flow meter For differential pressure flow devices the upstream pressure is applied	bar(a)
PD	Pressure corresponding with observed density	bar(a)
т	Temperature at the flow meter For differential pressure flow devices the upstream	К
ΤD	Temperature corresponding with observed density	К
Z	Compressibility at the (upstream) flow meter conditions)	-
ZD	Compressibility at temperature and pressure corresponding with observed density	-

Specific gravity calculation

One of the following calculations applies depending on the specific gravity input type.

$$SG = \frac{MM}{MM_{air}}$$

Equation 6-15: Specific gravity calculation (based on molar mass)

SG	Specific gravity	-
ММ	Molar mass	kg/kmol
MMair	Molar mass of air (parameter)	kg/kmol

$$SG = \frac{\rho_B \times T_R \times Z_B \times R/100}{P_R \times MM_{air}}$$

Equation 6-16: Specific gravity calculation (based on base density)

base density kg/sm3 ρв TR Reference temperature (parameter) κ Ζв Base compressibility (i.e. at reference conditions) P⊳ Pressure corresponding with observed density bar(a) J/K/mol R Universal gas constant (parameter) Molar mass of air (parameter) kg/kmol MMair

Relative density calculation

$$RD = \frac{\rho_B}{\rho_{Bair}}$$

Equation 6-17: Relative density calculation

RD	Relative density	-
ρв	Base density (i.e. at reference conditions)	kg/sm3
ρBair	Base density of air (parameter)	kg/sm3

Flow rates for volumetric flow meters

The following equations apply for any flow meter that provides a volumetric quantity as a pulse signal or as a smart signal (Modbus, HART or analog input)

It typically applies for the following type of meters:

- Turbine flow meter
- Positive displacement (PD) flow meter
- Ultrasonic flow meter

Indicated flow rate

For a flow meter that provides a pulse signal the meter K-factor is applied to obtain the indicated flow rate from the pulse frequency.

$$Q_{IV} = \frac{f}{MKF} \times 3600$$

Equation 6-18: Indicated volume flow rate

Qiv	Indicated (volume) flow rate	[m3/hr]
MKF	Meter K-factor	[pulses/m3]
f	Pulse frequency	[Hz]

For smart flow meters the indicated volume flow rate is obtained directly from the flow meter.

Gross volume flow rate

The gross volume flow rate (also called corrected flow rate) is derived from the indicated flow rate (or uncorrected flow rate) as following:

$$Q_{GV} = Q_{IV} \times MF \times MBF$$

Equation 6-19: Gross volume flow rate (volumetric flow meters)

Q _{GV}	Gross volume flow rate	[m3/hr]
Q _{IV}	Indicated volume flow rate	[m3/hr]
MBF	Meter body correction factor	[-]
MF	Meter factor	[-]

[%]

The meter factor is calculated from the meter error by this formula:

$$MF = \frac{100}{100 + MR}$$

Equation 6-20: Meter factor from Meter error

ME Meter error

However, when parameter '<u>MID compliance</u>' is enabled, no correction is applied when either the pulse frequency is below 10 Hz or the volume flow rate is below parameter 'Qmin' (in accordance with the EN-12405 standard part of MID).

$$Q_{GV} = Q_{IV}$$

Equation 6-21: Mass volume flow rate (volumetric flow meters) Mass flow rate

 $Q_M = Q_{GV} \times \rho$

Qм	Mass flow rate	[kg/hr]
Q _{GV}	Gross volume flow rate	[m3/hr]
ρ	Density at the flow meter conditions	[kg/m3]

Flow rates for mass flow meters

The following equations apply for any flow meter that provides a mass quantity as a pulse signal or as a smart signal (communications, HART or analog input). It typically applies for Coriolis flow meters.

Indicated flow rate

If the flow meter provides a pulse signal, then the meter K-factor is applied to obtain the indicated mass flow rate from the pulse frequency.

$$Q_{IM} = \frac{f}{MKF} \times 3600$$

Equation 6-22: Indicated mass flow rate (mass flow meters)

QIM	Indicated (mass) flow rate	[kg/hr]
MKF	Meter K-factor	[pulses/kg]
f	Pulse frequency	[Hz]

For smart flow meters the indicated mass flow rate is obtained directly from the flow meter.

Mass flow rate

The mass flow rate (corrected flow rate) is derived from the indicated mass flow rate (uncorrected flow rate) using this formula:

$$Q_M = Q_{IM} \times MF \times MBF$$

Equation 6-23: Mass flow rate (mass flow meters with pulse signal)

Qм	Mass flow rate	[kg/hr]
QIM	Indicated (mass) flow rate	[kg/hr]
MF	Meter factor	[-]

MBF Meter body correction factor

[-]

Gross volume flow rate

$$Q_{GV} = \frac{Q_M}{\rho}$$

Equation 6-24: Gross volume flow rate (mass flow meters)

Q_{GV}	Gross volume flow rate	[m3/hr]
QM	Mass flow rate	[kg/hr]
ρ	Density at the flow meter conditions	[kg/m3]

Base volume flow rate

$$Q_{BV} = Q_{GV} \times \frac{\rho}{\rho_B}$$

Equation 6-25: Base volume flow rate (volumetric flow meters)

Q_{BV}	Base volume flow rate	[sm3/hr]
\mathbf{Q}_{GV}	Gross volume flow rate	[m3/hr]
ρ	Density at the flow meter conditions	[kg/m3]
ρ _в	Density at the reference (base) conditions	[kg/sm3]

$$Q_{BV} = \frac{Q_M}{\rho_B}$$

Equation 6-26: Base volume flow rate (mass flow meters)

Q _{BV}	Base volume flow rate	[sm3/hr]
Qм	Mass flow rate	[kg/hr]
ρΒ	Density at the reference (base) conditions	[kg/sm3]

Energy flow rate

$$Q_E = \frac{Q_{BV} \times HV}{1000}$$

Equation 6-27: Energy flow rate

QE	Energy flow rate	[GJ/hr]
Q _{BV}	Base volume flow rate	[sm3/hr]
HV	Heating value at reference (base conditions)	[MJ/sm3]

Depending on parameter **Use Net HV for energy** HV is either the gross (higher) or the net (lower) heating value (calorific value).

Meter body correction

For ultrasonic flow meters a correction may be applied to compensate for the effect of the meter body expansion as a function of temperature and pressure of the fluid.

$$MBF = 1 + \varepsilon_T \times (T - T_R) + \varepsilon_p (P - P_R)$$

Equation 6-28: Meter body correction factor

MBF	Meter body correction factor	[-]
ε _T	Cubical temperature expansion coefficient	[m3/m3/°C]
т	Fluid temperature at the flow meter	[°C]
T _R	Reference temperature for the expansion	[°C]
ερ	Cubical pressure expansion coefficient	[m3/m3/bar]
Р	Fluid pressure at the flow meter	[bar(a)]
PR	Reference pressure for the expansion	[bar(a)]

Cubical expansion coefficient = Linear expansion coefficient x 3.

Flow rate for differential pressure flow devices

The method uses the equations from the International Standard ISO 5167-1: 'Measurement of Fluid Flow by means of pressure differential devices, Part 1: Orifice plates, nozzles and venturi tubes inserted in circular cross-section conduits running full'.

Mass flow rate (ISO-5167)

$$q_{M} = \frac{C}{\sqrt{1 - \beta^{4}}} \times \varepsilon \times \frac{\pi}{4} d^{2} \times \sqrt{2 \times \Delta P \times \rho_{1}}$$

Equation 6-29: ISO-5167 mass flow rate

Mass flow rate	kg/sec	
Coefficient of Discharge	-	
Fluid expansion factor	-	
3.14159		
Orifice diameter at line temperature	m	
Flowing density at line conditions	kg/m3	
Differential pressure	Ра	
	Coefficient of Discharge Fluid expansion factor 3.14159 Orifice diameter at line temperature Flowing density at line conditions	Coefficient of Discharge-Fluid expansion factor-3.14159-Orifice diameter at line temperaturemFlowing density at line conditionskg/m3

$$Q_M = \frac{q_M * 3600}{1000}$$

Equation 6-30: Mass flow rate in practical working units (orifice plate)

Device and pipe diameter (Corrected) at operating temperature

 $d = d_r \left[1 + \alpha_1 \left(T_L - T_R \right) \right]$

Equation 6-31: Orifice Diameter correction

 $D = D_r \left[1 + \alpha_1 \left(T_L - T_R \right) \right]$

Equation 6-32: Pipe Diameter correction

d	Orifice diameter at operating temperature	mm
d _r	Orifice diameter at reference temperature	mm
D	Pipe diameter at operating temperature	mm
Dr	Pipe diameter at reference temperature	mm
α1	Coefficient of expansion of orifice and pipe material	mm/mm/°C
TL	Fluid temperature at operating conditions	°C

ΤR	Reference temperature of the Orifice/Pipe.	°C

Diameter (Beta) Ratio

$$\beta = \frac{d}{D}$$

Equation 6-33: Beta ratio calculation

Reynolds Number

$$R_D = \frac{4 \times q_m}{\pi \times \mu \times D}$$

Equation 6-34: Reynolds Number based on Pipe diameter

RD	Reynolds Number	-
qm	Mass flow rate	kg/sec
π	3.14159	-
μ	Fluid dynamic viscosity	Pa-sec
D	Pipe diameter	m

Velocity of Approach (E_v)

$$E_{v} = \frac{1}{\sqrt{1 - \beta^4}}$$

Equation 6-35: ISO-5167 Velocity of Approach calculation

Fluid Expansion Factor ε

AGA-5167 defines the following equation for the Fluid Expansion Factor for orifices:

$$\varepsilon = 1 - \left(0.41 + 0.35 \times \beta^4\right) \times \frac{X_1}{\kappa}$$

Equation 6-36: ISO-5167 Reynolds Expansion Factor (Gas)

-
essure to absolute upstream tap
upstream tap

Down- to upstream corrections

The calculation of the mass flow rate from a differential pressure flow device (orifice, venturi and V-cone) requires the temperature, pressure and density values upstream of the flow device. For a variable that is measured downstream of the flow meter, a downstream to upstream correction is required.

Two downstream measurement locations are supported, namely at the downstream tap and at the location where the pressure has fully recovered from the pressure drop over the flow device.

Pressure correction

In most cases the static pressure is taken from the upstream tap, so no correction is required. When the pressure is measured downstream of the flow device then the following corrections are taken. The relation between the pressure at the upstream tapping p₁ and the pressure at the downstream tapping (p₂) is as follows:

$$P_1 = P_2 + \Delta P / 1000$$

• The relation between the pressure at the upstream tapping and the fully recovered downstream tapping is as follows:

$$P_1 = P_3 + P_{LOSS}$$

The calculation of $\mathsf{P}_{\mathsf{LOSS}}$ is as defined in the ISO-5167 standard.

P 1	Pressure at upstream tapping	[bar(a)]
P ₂	Pressure at downstream tapping	[bar(a)]
Pз	Fully recovered downstream pressure	[bar(a)]
ΔP	Differential pressure	[mbar]
PLOSS	Pressure loss over the meter	[bar]

Temperature correction

The method used to correct the temperature from downstream to upstream conditions is user-definable. The following 3 methods are provided:

Method 1: <u>Isentropic</u> expansion based on the isentropic coefficient κ.

$$T_{1} = (T_{2} + 273.15) \times \left(\frac{P_{2}}{P_{1}}\right)^{\frac{1-\kappa}{\kappa}} - 273.15$$
$$T_{1} = (T_{3} + 273.15) \times \left(\frac{P_{3}}{P_{1}}\right)^{\frac{1-\kappa}{\kappa}} - 273.15$$

 Method 2: <u>Isentropic</u> expansion based on the separate userdefinable parameter 'Temperature exponent' K_{TE}:

$$T_{1} = (T_{2} + 273.15) \times \left(\frac{P_{2}}{P_{1}}\right)^{K_{TE}} - 273.15$$
$$T_{1} = (T_{3} + 273.15) \times \left(\frac{P_{3}}{P_{1}}\right)^{K_{TE}} - 273.15$$

 Method 3: <u>isenthalpic</u> expansion based on the linear Joule Thomson correction as defined in ISO5167-1:2003, taking parameter 'Temperature exponent' as the Joule Thomson coefficient µ_{JT}:

$$T_{1} = T_{2} + (P_{1} - P_{2}) \cdot \mu_{JT}$$
$$T_{1} = T_{3} + (P_{1} - P_{3}) \cdot \mu_{JT}$$

T_1	Upstream temperature	°C
T ₂	Downstream temperature	°C
Тз	Temperature at recovered pressure position	°C
P ₁	Upstream pressure	bar(a)

P ₂	Downstream pressure	bar(a)
P ₃	Fully recovered downstream pressure	bar(a)
κ	Isentropic exponent	-
K _{TE}	Temperature exponent	-
μյτ	Joule Thomson coefficient	°C/bar

The Joule Thomson coefficient μ_{JT} is either a manually entered fixed value or calculated according to ISO/TR 9464:

$$\mu_{JT} = 0.35 - 0.00142 \cdot T_3 + (0.231 - 0.00294 \cdot T_3 + 0.0000136 \cdot T_3^2) \times (0.998 + 0.00041 \cdot P_1 - 0.000115 \cdot P_1^2 + 0.0000003 \cdot P_1^3)$$

Тз	Temperature at recovered pressure position	°C
P ₁	Upstream pressure	bar(a)
μэт	Joule Thomson coefficient	°C/bar

Orifice correction for drain hole

A drain hole may have been drilled into the bottom of the orifice plate to prevent condensate from interfering with measurement. The option is provided to define a drain hole diameter. When the drain hole diameter is larger than 0 then the following correction factor is applied on the orifice diameter according to the British standard 1042: Part 1: 1964.

$$C_{DH} = 1 + 0.55 * \left(\frac{d_{DH}}{d_0}\right)^2$$

Срн	Drain hole correction factor on orifice diameter	[-]
d _{DH}	Drain hole diameter	[mm]
d ₀	Orifice diameter at reference temperature	[mm]

Wet gas correction

If differential pressure type flow meters are operated in the presence of free liquid, they will generally overestimate the dry gas flow rate. A number of algorithms have been used in order to account for the over-read. The correction algorithms by **De Leeuw** and **Reader-Harris** are supported. These operate in combination with a venturi dP meter.

Wet gas correction is either based on a manually entered **gas mass fraction**, or on a measured **pressure loss** between the upstream and recovered positions.

Lockhart-Martinelli

1.) In case of a manually entered **gas mass fraction** the Lockhart-Martinelli number is calculated by the following formula.

$$X = \frac{1 - x_f}{x_f} \sqrt{\frac{\rho_{1,gas}}{\rho_{liquid}}}$$

Lockhart-Martinelli nr.	[-]
Manually entered gas mass fraction, defined as	[-]
gas mass / (gas mass + liquid mass)	
Upstream density	[kg/m3]
Manually entered liquid density	[kg/m3]
	Manually entered gas mass fraction, defined as gas mass / (gas mass + liquid mass) Upstream density

2.) In case of a measured **pressure loss** the following formulas are used.

The difference between the measured pressure loss ratio and the pressure loss ratio that is expected on dry gas is:

$$Y = \xi - \xi_{dry}$$

ξ	Measured pressure loss ratio	[-]	
ξ _{dry}	Calculated pressure loss ratio for the dry gas	[-]	

The measured pressure loss ratio is calculated by:

$$\xi = \frac{\Delta \omega}{\Delta p}$$

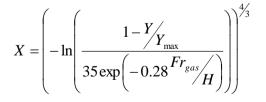
Δω	Measured pressure loss between upstream and	[mbar]
	recovered positions	
Δр	Measured differential pressure between upstream	[mbar]
	and downstream positions	

The **calculated pressure loss ratio** for the dry gas ξ_{dry} is derived by linear interpolation of a pressure loss ration / Reynolds curve, or calculated by one of the following formulas:

Miller

 $\xi_{dry} = A\beta^2 + B\beta + C$

β	Ratio of diameters	[-]
A,B,C	Miller coefficients	[-]


ISO/DTR 11583

 $\xi_{drv} = 0.0896 + 0.48\beta^9$

For a venturi with a divergent angle of 7° to 8° the limiting value of the difference in pressure loss is:

$$Y_{\text{max}} = 0.61 \exp\left(-11 \frac{\rho_{1,gas}}{\rho_{liquid}} - \frac{0.045 F r_{gas}}{H}\right)$$

The Lockhart Martinelli number is calculated as follows:

Froude number

$$Fr_{gas} = \frac{4q_{m,gas}}{\rho_{1,gas}\pi D^2 \sqrt{gD}} \sqrt{\frac{\rho_{1,gas}}{\rho_{liquid} - \rho_{1,gas}}}$$

Fr_{gas}	Gas Froude nr.	[-]
q m,gas	Gas mass flow rate	[kg/s]

$\rho_{1,gas}$	Upstream density	[kg/m3]
pliquid	Manually entered liquid density	[kg/m3]
D	Internal pipe diameter	[m]
g	Local acceleration due to gravity	[m/s²]

Density ratio exponent n

De Leeuw:

n

$$= 0.606 \left(1 - e^{-0.746 F r_{gas}} \right)$$
 for

$$n = 0.41$$

 $0.5 \leq Fr_{gas} \leq 1.5$

Fr_{gas} ≥ 1.5

Reader Harris:

n = m	$\max\left(0.583 - 0.18\beta^2 - 0.578e^{\frac{-0.8Fr_{gas}}{H}}, 0.392 - 0.578e^{\frac{-0.8Fr_{gas}}{H}}\right)$	$0.18\beta^2$
n	Density ratio exponent	[-]
β	Ratio of diameters	[-]
Fr _{gas}	Gas Froude nr.	[-]
н	Coefficient based on the liquid. 1 for hydrocarbon liquid,	[-]
	1.35 for water at ambient temperature.	

for

Wet gas correction factor

$$\Phi = \sqrt{1 + C_{Ch}X + X^2}$$

With

$$C_{Ch} = \left(\frac{\rho_{liquid}}{\rho_{l,gas}}\right)^n + \left(\frac{\rho_{l,gas}}{\rho_{liquid}}\right)^l$$

The **corrected mass flow rate** is calculated by the formula:

$$q_{m,gas} = \frac{q_m}{\Phi}$$

q _m	Uncorrected mass flow rate from ISO5167	[kg/s]
q m,gas	Corrected gas mass flow rate	[kg/s]
х	Lockhart-Martinelli nr.	[-]
n	Density ratio exponent	[-]
Cch	Chisholm constant	[-]
φ	Wet gas correction factor	[-]

Discharge coefficient correction

In case of wet gas correction according to **Reader-Harris** the discharge coefficient is corrected as follows:

$$C = C_{fullywet}$$
 for $X \ge 0.016$

$$C = C_{dry} - \left(C_{dry} - C_{fullywet}\right) \sqrt{\frac{X}{0.016}} \quad \text{for} \quad X < 0.016$$

With:

$$C_{fullywet} = 1 - 0.0463e^{-0.05Fr_{gas,th}}$$

$$Fr_{gas,th} = \frac{\Gamma r_{gas}}{\beta^{2.5}}$$

С	Corrected discharge coefficient	[-]
C _{fully wet}	Fully wet discharge coefficient	[-]
Cdry	Discharge coefficient for the dry gas	[-]
Х	Lockhart-Martinelli nr.	[-]
Fr _{gas}	Froude nr.	[-]
Fr _{gas,th}	Throath Froude nr.	[-]
β	Ratio of diameters	[-]

In case of wet gas correction according to **De Leeuw**, the discharge coefficient is not corrected:

$$C = C_{dry}$$

Gass mass fraction

If the Lockhart-Martinelli number is calculated from the measured pressure loss, the gas mass fraction is calculated as follows:

$$x_m = \frac{1}{1 + X \sqrt{\frac{\rho_{liquid}}{\rho_{1,gas}}}}$$

Differential pressure cell selection

When more than 1 differential pressure transmitters are applied on a differential pressure flow device, then one of the measurements will be used for the calculation of the mass flow rate. The flow computer provides several different selection methods meter runs using 2 or 3 differential pressure cells.

2 cells, range type = 'Lo Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switchup percentage of its range and cell B is healthy.
- Select cell B when cell A fails while cell B is healthy

When cell B is currently selected

- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell A when cell B fails and cell A is healthy

2 cells, range type = 'Hi Hi'

When cell A is currently selected

• Select cell B when cell A value fails and cell B is healthy

When cell B is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell A when cell B fails and cell A is healthy.

3 cells, range type = 'Lo Mid Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switchup percentage of its range and cell B is healthy.
- Select cell B when cell A fails while cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell C when cell B value is above or equal to the switch-up percentage of its range and cell C is healthy
- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell A when cell B fails while cell A is healthy
- Select cell C when cell B and cell A fail and cell C is healthy

When cell C is currently selected

- Select cell B when cell B value is below or equal to the switchdown percentage of its range and cell B is healthy
- Select cell B when cell C fails while cell B is healthy
- Select cell A when cell C and cell B fail and cell A is healthy

3 cells, range type = 'Lo Hi Hi'

When cell A is currently selected

- Select cell B when cell A value is above or equal to the switchup percentage of its range and cell B is healthy.
- Select cell C when cell A value is above or equal to the switch-up percentage of its range and cell B fails and cell C is healthy.
- Select cell B when cell A fails while cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell C when cell B fails while cell C is healthy
- Select cell A when cell B and cell C fail and cell A is healthy

When cell C is currently selected

- Select cell A when cell A value is below or equal to the switchdown percentage of its range and cell A is healthy
- Select cell B when cell B is healthy and 'Auto switchback' is enabled
- Select cell A when cell C and cell B fail and cell A is healthy

3 cells, range type = 'Hi Hi Hi'

When cell A is currently selected

- Select cell B when cell A value fails and cell B is healthy
- Select cell C when cell A and cell B fail and cell C is healthy

When cell B is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell A when cell B fails and cell A is healthy
- Select cell C when cell B and A fail and cell C is healthy

When cell C is currently selected

- Select cell A when cell A is healthy and 'Auto switchback' is enabled
- Select cell B when cell B is healthy and cell A fails and 'Auto switchback' is enabled
- Select cell A when cell C fails and cell A is healthy

• Select cell B when cell C and A fail and cell B is healthy

Master meter proving

Master meter proving is based on simultaneously measuring an amount of fluid by two meters that are installed in series. There are two different methods to calculate the volumes, by pulse counting or by totalizers latching.

Pulse counting

This method is only available if the flow computer reads pulses from both the meter on prove and the master meter.

The meter on prove and master meter prove totals (volume or mass totals, depending on meter quantity type) are calculated as follows:

$$Tot_{MM} = \frac{P_{MM}}{MKF_{MM}}$$
$$Tot_{M} = \frac{P_{M}}{MKF_{M}}$$

Equation 6-37: Master meter proving total measurement using the pulse counting method.

Tot _{MM}	Master meter prove total	m3 or kg
Р _{мм}	Pulses between start and stop of the prove counted by the master meter	-
MKF _{MM}	Actual K factor of the master meter (at the master meter frequency)	pls/m3 or pls/kg
Tot _M	Meter on prove prove total	m3 or kg
Рм	Pulses between start and stop of the prove counted by the meter on prove	
MKFM	Actual K factor of the meter on prove (at the meter frequency)	pls/m3 or pls/kg

Totalizer latching

This method is also available for smart meters and / or master meters from which the flow computer doesn't read pulses.

The meter on prove and master meter prove totals (volume or mass totals, depending on meter quantity type) are calculated as follows:

$$Tot_{MM} = Tot_{MM}(stop) - Tot_{MM}(start)$$
$$Tot_{M} = \left(Tot_{M}(stop) - Tot_{M}(start)\right) \times \frac{t_{MM}}{t_{M}}$$

Equation 6-38: Master meter proving total measurement using the totalizer latching method.

Tot _{MM}	Master meter prove total	m3 or kg
Tot _{MM} (stop)	Indicated totalizer of the master meter at prove end	m3 or kg
Tot _{MM} (start)	Indicated totalizer of the master meter at prove start	m3 or kg
Tot _M	Meter on prove prove total	m3 or kg
Tot _M (stop)	Indicated totalizer of the meter on prove at prove end	m3 or kg
Tot _M (start)	Indicated totalizer of the meter on prove at prove start	m3 or kg

tмм	Time between start and stop from master meter module	sec
tм	Time between start and stop from meter on prove module	sec

The correction factor t_{MM} / t_M accounts for possible differences in prove time between the master meter flow module / computer and the meter on prove flow module / computer, caused by the fact that both modules have their own independent calculation cycle and possible delays in the start / stop signal.

Meter factor calculation for master meter proving

Both volumetric and mass meters are supported for both the meter on prove and the master meter. Therefore 4 different formulas are used for the 4 possible combinations.

$$MF_{P} = \frac{V_{MM} \times MBF_{MM} \times MF_{MM} \times \frac{\rho_{MM}}{\rho_{B}}}{V_{M} \times MBF_{M} \times \frac{\rho_{M}}{\rho_{B}}}$$

Equation 6-39: Prover Meter Factor for master meter proving of a <u>volumetric</u> meter using a <u>volumetric</u> master meter.

$$MF_{P} = \frac{M_{MM} \times MBF_{MM} \times MF_{MM} \times \frac{1}{\rho_{B}}}{V_{M} \times MBF_{M} \times \frac{\rho_{M}}{\rho_{B}}}$$

Equation 6-40: Prover Meter Factor for master meter proving of a <u>volumetric</u> meter using a <u>mass</u> master meter.

$$MF_{P} = \frac{V_{MM} \times MBF_{MM} \times MF_{MM} \times \rho_{MM}}{M_{M} \times MBF_{M}}$$

Equation 6-41: Prover Meter Factor for master meter proving of a <u>mass</u> meter using a <u>volumetric</u> master meter.

$$MF_{P} = \frac{M_{MM} \times MBF_{MM} \times MF_{MM}}{M_{M} \times MBF_{M}}$$

Equation 6-42: Prover Meter Factor for master meter proving of a <u>mass</u> meter using a <u>mass</u> master meter.

MF _P	Meter factor calculated from proving	-
Vмм	Master meter (uncorrected) volume	m3
Ммм	Master meter (uncorrected) mass	kg
МҒмм	Meter factor of the master meter (at the proving flow rate)	-
MBF _{MM}	Meter body correction factor of the master meter	-
MBFM	Meter body correction factor of the meter on prove	-
Vм	Meter on prove (uncorrected) volume	m3
Мм	Meter on prove (uncorrected) mass	kg
ρ _{мм}	Meter density of the master meter (density at the master meter conditions)	-
ρм	Meter density of the meter on prove (density at the meter conditions)	-
ρ _в	Base density (density at reference conditions)	-

.

7 Reports

Reports of the Flow-X flow computer are freely configurable. The layout of the standard reports can be modified and other userdefined reports may be added. Refer to manual IIA 'Operation and Configuration', chapter 'Reports' for further explanation. Reports are stored on the flow computer's flash disk, where they remain available for a configurable time. Reports can be read from the flow computer display or web browser and they can be retrieved from the flow computer by web requests (see the Flow-X webs services reference manual for details).

Standard reports

The Gas Metric application provides the following standard reports:

Report name	Report description
Run_Daily	Daily report for one run which is generated automatically at
	the end of each day. Shows forward values only.
Stn_Daily	Daily report for the station which is generated automatically
	at the end of each day. Shows the forward values for the
	station and up to 4 runs.
Run_Hourly	Hourly report for one run which is generated automatically at
	the end of each hour. Shows forward values only.
Stn_Hourly	Hourly report for the station which is generated
	automatically at the end of each hour. Shows the forward
	values for the station and up to 4 runs.
Run_PeriodA	Period A report for one run which is generated automatically
-	at the end of each period A. Shows forward values only.
Stn_PeriodA	Period A report for the station which is generated
_	automatically at the end of each period A. Shows the forward
	values for the station and up to 4 runs.
Run PeriodB	Period B report for one run which is generated automatically
-	at the end of each period B. Shows forward values only.
Stn PeriodB	Period B report for the station which is generated
-	automatically at the end of each period B. Shows the forward
	values for the station and up to 4 runs.
Run_Current	Shows a consistent snapshot of the actual input and
_	calculated values of one run. All values are of the same
	calculation cycle. Printed on manual command. Shows
	forward values only.
Stn_Current	Shows a consistent snapshot of the actual input and
_	calculated values of the station and up to 4 runs. Printed on
	manual command. Shows forward values only.
MasterMeter	Generated automatically at the end of a master meter
	proving sequence if the meter quantity type is 'volume'.
MasterMeterM	Generated automatically at the end of a master meter
ass	proving sequence if the meter quantity type is 'mass'.
Events_Daily	Generated automatically at the end of the day. Shows all
	events (other than alarm transitions) during the day.
Alarms_Daily	Generated automatically at the end of the day. Shows all
_ ,	alarm transitions during the day.

Table 3: Standard reports

In flow-Xpress, generation of specific reports can be enabled or disabled. By default most reports have been disabled. They can be enabled in Flow-Xpress -> Reports, by right clicking on the report and selecting 'Enabled''.

8 Communication

The application contains a number of standard Modbus lists for communication to flow meters, DCS systems, HMI systems, etc. Furthermore a number of standard HART communication lists are available for communication to transmitters and flow meters that support the HART protocol.

To use any of these communication lists, you have to select it in Flow-Xpress 'Ports & Devices' and assign it to the appropriate communication port.

With Flow-Xpress Professional, communication lists can be freely added, modified, extended etc.

Refer to manual IIA 'Operation and Configuration', chapter 'Communication' for more details.

Standard Modbus communication lists

Modbus Tag List

The application provides an overall Modbus communication list that contains all variables and parameters of up to four meter runs, station and proving. This communication list can be used for serial and Ethernet communication.

This Modbus tag list uses a register size of 2 bytes (16 bits) for integer data, a register size of 4 bytes (32 bits) for single precision floating point data (f.e. process values and averages) and a register size of 8 bytes (64 bits) for double precision floating point data (totalizers).

This overall communication list can be used 'as is' or it can be modified if required.

Modbus Tag List 16 bits

This is an abbreviated Modbus tag list, which only includes the most important data, like process values and totalizers. It is mainly meant for communication to older (DCS) systems or PLC's that don't support data addresses larger than 16 bits.

This Modbus tag list uses a register size of 2 bytes (16 bits) for integer data, single precision floating point data (process values) and long integer data (totalizers).

Because with this tag list the totalizers are communicated as long integers, the **totalizer rollover** values should not be set higher than 1.E+09.

Except for the FC time, which can be written for time synchronization, this tag list only contains read data.

This communication list can be used 'as is' or it can be modified if required.

Connect to remote station

Generic Modbus list for communication between a station / proving flow computer and a remote run flow computer. Select this Modbus list on each remote run flow computer that has to communicate to a (remote) station / proving flow computer.

Refer to paragraphs Configuration, Overall setup, Flow computer concepts and Configuration, Proving, Proving setup for more details.

Connect to remote run

Generic Modbus list for communication between a station / proving flow computer and a remote run flow computer. Select this Modbus list on a station / prover flow computer that has to communicate to one or more remote run flow computers. For each remote run flow computer a separate 'Connect to remote run' Modbus list has to be selected.

A station / prove flow computer can communicate to up to 8 remote run flow computers.

Refer to paragraphs Configuration, Overall setup, Flow computer concepts and Configuration, Proving, Proving setup for more details.

Omni compatible communication list

The application contains the following Omni compatible Modbus list:

Modbus tag list (Omni v27)
 Compatible to Omni v27, max. 4 runs.

Custom data packets 1, 201 and 401 and historical data archives 701-710 are supported, but must be customized using Flow-Xpress Professional.

Modbus devices

The application by default supports the following Modbus devices:

Flow meters:

- Altosonic V12 ultrasonic flow meter
- Caldon LEFM 380Ci ultrasonic flow meter
- FlowSic 600 ultrasonic flow meter
- FlowSic 600 XT ultrasonic flow meter
- FMC MPU ultrasonic flow meter
- GE GF868 ultrasonic flow meter
- Micro Motion Coriolis flow meter
- Elster Q.sonic ultrasonic flow meter (uniform)
- Elster Q.sonic plus ultrasonic flow meter (Modbus)
- RMG USZ08 ultrasonic flow meter

Gas chromatographs:

- Siemens Maxum
- Siemens Sitrans

- Yamatake HGC
- ABB BTU 8100
- ABB NGC 8200 series
- Emerson Danalyzer
- Elster Encal 3000
- Angus Gas Quality Analyser

Additional Modbus devices can be configured using Flow-Xpress Professional.

HART devices

The application by default supports the following HART devices:

Flow meters:

Flow meter HART

Generic communication driver for flow meters that provide a flow rate through HART

Generic HART communication lists for temperature, pressure, dP transmitters etc. that support the HART protocol:

• HART transmitter (1 var v5). HART communication list for transmitters that comply with the HART standard version 5. This list only reads the first HART variable. Because for most HART transmitters the first variable is the main process value, this can be used in most cases.

- HART transmitter (1 var v6). HART communication list for transmitters that comply with the HART standard version 6. This list only reads the first HART variable. Because for most HART transmitters the first variable is the main process value, this can be used in most cases.
- HART transmitter (1 var v7). HART communication list for transmitters that comply with the HART standard version 7. This list only reads the first HART variable. Because for most HART transmitters the first variable is the main process value, this can be used in most cases.
- HART transmitter (3 var). HART communication list that reads all variables (for transmitter that comply with the HART standard version 5). Has to be selected if you want to use the 2nd or 3th HART variable from a HART transmitter that supports 3 variables.
- HART transmitter (4 var). HART communication list that reads all variables (for transmitter that comply with the HART standard version 5). Has to be selected if you want to use the 2nd, 3th or 4th HART variable from a HART transmitter that supports 4 variables.

Additional HART devices can be configured using Flow-Xpress Professional.

9 Historical Data Archives

Historical Data Archives provide a convenient way to store, view and hand-off all relevant historical batch and period data.

Historical data archives are freely configurable using Flow-Xpress Professional. Existing archives may be modified and new archives may be added.

Historical data archives can be read from the flow computer display or web browser. They can be retrieved from the flow computer as XML files by web requests (see the Flow-X webs services reference manual for details) and they can be read using Modbus. The Flow-X supports the Omni Raw Data Archive RDA polling method (Omni archives 701-710).

Standard Data Archives

The application by default contains the following historical data archives

- Daily_Run Contains the daily run data of the last 95 days (configurable)
- Daily_Station
 Contains the daily station data of the last 95 days
 (configurable)
- Hourly_Run Contains the hourly run data of the last 30 days (configurable)
- Hourly_Station
 Contains the hourly station data of the last 30 days (configurable)
- PeriodA_Run Contains the period A run data of the last 30 days (configurable)
- PeriodA_Station| Contains the period A station data of the last 30 days (configurable)
- PeriodB_Run Contains the period B run data of the last 30 days (configurable)
- PeriodB_Station Contains the period B station data of the last 30 days (configurable)

10 MID Compliance

Accountable alarms

EN-12405, the metrological standard used by the MID (Measuring Instruments Directive) for gas flow computers requires that the base volume and mass totals are disabled when an accountable alarm occurs.

In the following situations the Flow-X raises an accountable alarm:

- Meter temperature transmitter fail, override value enabled, input forced or in calibration
- Meter pressure transmitter fail, override value enabled, input forced or in calibration
- Density transmitter failure, input forced or in calibration
- Density temperature transmitter fail, override value enabled, input forced or in calibration
- Density pressure transmitter fail, override value enabled, input forced or in calibration
- Differential pressure transmitter failure or ISO5167 / AGA3 calculation failure (dP meters)
- Pulse input failure or forced (pulse meters)
- Meter communication failure, measurement failure or flow rate forced (smart meter)
- Data invalid alarm
- Gas chromatograph communication fail, measurement fail, analysis delayed (optional), composition limit alarm (optional), override composition enabled
- Density calculation fail, base density transmitter fail, override value enabled, input forced or in calibration
- Meter density calculation fail
- Heating value calculation fail, transmitter fail, override value enabled, input forced or in calibration (optional)
- Flow rate out of accountable limits
- Meter temperature out of accountable limits
- Meter pressure out of accountable limits
- Custom accountable alarm, which can be used to add custom, user specific, accountable alarm conditions.

For this purpose the application provides an additional set of accountable and non-accountable totalizers. If there is no accountable alarm then the accountable totalizers are active and the non-accountable totalizers are inactive. In case of an accountable alarm the non-accountable totalizers are active and the accountable totalizers are inactive. The normal totalizers are active regardless of the accountable alarm.

If needed, the accountable alarm (**Any accountable alarm**) can also be used to stop the flow, by closing a valve or withdrawing the flow control PID permissive, using Flow-Xpress custom calculations.

Flow meter correction

EN-12405 requires that the flow meter signal correction (based on the meter factor / meter error calibration curve) is disabled under the following conditions:

- Pulse frequency < 10 Hz
- Flow rate < Qmin

When setting 'MID Compliance' is enabled then the flow meter correction will be disabled accordingly.

11 Revisions

Revision A

Date February 2009

• Initial, preliminary release of the Flow-X Manual Volume IIB - Gas Metric Application.

Revision B

Date February 2015

- Complete review of the manual. Major update, describing new functionality of application version 1.2.2.
- Update to application version 1.2.3.
- Update to application version 1.3.2.
- Update to application version 1.4.0.
- Minor editorial changes

Revision C

Date December 2015

• Major review of the manual. Update to application version 2.1.0.

Revision C1

Date October 2017

• Update to ABB lay-out

Revision D

Date January 2018

• Update to application version 2.2.0.

Revision E

Date March 2019

• Update to application version 2.3.0.

ABB B.V. Measurement & Analytics

Prof. Dr. Dorgelolaan 20

5613 AM Eindhoven The Netherlands Phone: +31 40 236 9445 Mail: nl-spiritit-sales@abb.com

ABB Malaysia Sdn Bhd. Measurement & Analytics

Lot 608, Jalan SS 13/1K

47500 Subang Jaya Selangor Darul Ehsan, Malaysia Phone: +60 3 5628 4888

abb.com/midstream

ABB Inc.

Measurement & Analytics

7051 Industrial Boulevard Bartlesville OK 74006 United States of America Phone: +1 800 442 3097

ABB Limited

Measurement & Analytics Oldends Lane, Stonehouse Gloucestershire, GL10 3TA United Kingdom Phone: +44 7730 019 180

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. © ABB 2019