

3 - way valve (PN 10)

KOVM - internal thread

Description

KOVM is 3-way mixing valve which can, among others, be used for the water-side regulation of terminals in the form of "fan-coils" or as induction units.

It can be combined with:

- RAVK self-acting thermostatic actuators
- RA 8564 remote setting element

Main data:

- DN 15
- k_{vs} 0,63 2,0 m³/h
- PN 10
- Temperature:
 - Circulation water / glycolic water up to 30 %:
 2 ... 90 °C
- Connections:
- Int. thread

Ordering

Example:

3-way valve; DN 15; k_{vs} 1,5; PN 10; t_{max} 90 °C; int. thread.

- 1× KOVM DN 15 valve Code No: **013U3015**

Option:

- 1x Comp. fittings Code No: **013G4112**

KOVM valve

	DN	k vs ¹⁾ (m³/h)	Connection ISO 7/1	Differential pressure max. (bar)			6 J N
Picture				with bypass	without bypass	$\Delta p_c^{2)}$	Code No.
	15	0,63	R _P 1/2	1,6	0,8	0,8	013U3014
		1,5			0,8	0,8	013U3015
		2,0			0,5	0,5	013U3020
ᄖᇎ		·			·		

 $^{1)}$ $k_{\rm VS}$ gives the water flow with fully open valve and differential pressure across the valve $\Delta p_{\rm v} = 1$ bar

 $^{2)}$ Δp_{c} gives the max. differential pressure across the heat exchanger controlled by the value

Accessories

Picture	Type designations	Connection	Dimensions	Code No. ³⁾
	Compression fittings ^{1), 2)}	G ½ A	Ø 12 × 1	013G4112
			Ø 14 × 1	013G4114
			Ø 15 × 1	013G4115
			Ø 16 × 1	013G4116

¹⁾ Compression fitting consist of compression ring and nut

²⁾ For steel and copper pipe

³⁾ The products can only be ordered in multiple packing containing 10 pieces each

Service kits

Picture	Type designations	
	Valve stuffing box	065F0006 ¹⁾

 $^{\eta}$ The products can only be ordered in multiple packing containing 10 pieces each

3 - way valve KOVM (PN 10)

Technical data

Valve						
Nominal diameter	15					
k _{vs} value	m³/h	0,63	1,5	2,0		
Stroke	mm	1,5				
Cavitation factor z	≥ 0,5					
Nominal pressure	PN	10				
Medium	Circulation water / glycolic water up to 30 %					
Medium pH	Min. 7, max. 10					
Medium temperature	°C	2 90				
Connections	Int. thread					
Materials						
Valve body ¹⁾	Brass					
Pressure pin and spindle	Stainless steel 18/8					
Valve cone	EPDM					
O-rings	EPDM					

 $^{\rm p}$ The valve body material does not permit the valve being used for service hot water.

Application principles

3 - way valve KOVM (PN 10)

Sizing

The k_v value can be calculated from the formula:

$$k_v = \frac{Q}{\sqrt{\Delta p}} = \frac{0.6}{\sqrt{0.12}} = 1.73 \,\text{m}^3/\text{h}$$

or be read from the diagram on the sloping lines for 1,75 m³/h, where the horizontal dotted line for Q = 0,6 m³/h intersects the vertical dotted line for Δp = 0,12 bar.

The selection is thus a valve with a $k_{\nu s}$ value of 2,0 $m^3/h.$

Janfoss

3 - way valve KOVM (PN 10)

Design

- Valve stuffing box
 Bottom screw
 Valve body
 Valve cone

Dimensions

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

VD.57.C7.02