Advance Optima Continuous gas analyzers AO2000 Modbus and AO-MDDE

Technical information

30/24-316 EN Rev. 6

Contents

Page

Chapter 1	AO2000 Modbus	4
	Description	4
	Modbus frames and functions	6
	Modbus over TCP/IP	7
	Modbus according to VDI 4201 Sheet 3	8
	IEEE 754 format	10
	Modbus addresses and data format	11
	Measurement values	12
	Analog inputs	12
	Analog outputs	13
	Digital inputs	13
	Digital outputs	14
	Bus analog inputs	14
	Bus analog outputs	15
	Bus digital inputs	15
	Bus digital outputs	10
	Status	10
	Measurement range feedback	10
	Measurement range configuration	18
	Measurement range drift values	19
	Mapping the calibration data for QAL3	21
Chapter 2	Setting Modbus parameters	24
	Modbus parameters	24
	Address overview in the AO2000 menu (software version \geq 5.1)	25
	Modbus address assignment (software version < 5.1)	28
Chapter 3	Modbus connection	30
	Connection via the RS232 interface	30
	Connection via the RS485 interface	31
	Components for RS485 connection	33
Chapter 4	AO-MDDE server and demo programs	35
	Description	35
	Installation	36
	Start	37
	LabVIEW demo program	38
	Excel demo program	39

Description

Application	Information from the AO2000 gas analyzer can be transferred to a PC or DCS via the Modbus. Measurement values, status signals and also signals of analog and digital inputs and outputs are thus available for further usage.
	Using the AO-MDDE server the signals can be integrated into standard software (e.g. Excel, Visual Basic or LabVIEW). For further information, see Chapter 4 "AO-MDDE server and demo programs", page 3535. AO-MDDE can be downloaded from the DVD-ROM which is delivered together with each gas analyzer. AO-MDDE does not support Modbus over TCP/IP.
Basic documents	 Modbus Application Protocol Specification V1.1b, December 28, 2006
	 Modbus over Serial Line Specification and Implementation Guide V1.02, December 20, 2006
	Modbus Messaging on TCP/IP Implementation Guide V1.0b, October 24, 2006
	These documents are available at http://www.modbus.org/specs.php.
Interfaces and connection versions	The RS232 and the RS485 interface located on the RS232/RS485 module in AO2000 are supported, where only one can be operated at a time. Connection versions are described in Chapter 3 "Modbus connection", page 30.
	As an alternative, the Ethernet 10/100BASE-T interface can be used for data transmission via Modbus TCP/IP protocol (from software version 5.1, see page 7).
	Continued on next page

Description, continued

Transferred data	Read	Write	Example
Measurement values	х	-	CO, NO, H ₂ , etc.
Analog inputs	х	-	Indication of mA-values of external analyzers
Analog outputs	х	_	Indication of mA-values of measurement values or calculated
			values (function block application)
Digital inputs	х	-	Indication of external status signals
Digital outputs	х	-	Measurement range feedback, indication of solenoid or pump controls
Bus analog inputs	х	х	Entering analog values into the function block application
Bus analog outputs	х	-	Outputting analog values from the function block application
Bus digital inputs	х	Х	Control of functions such as auto calibration, measuring range control, etc. after function block configuration
Bus digital outputs	х	-	Indication of all functions integrated by function block configura- tion such as alarm signaling etc.
Modbus configuration	х	-	Indication how many components, AOs, DOs, etc. have been configured or are in the gas analyzer
Status signals	х	_	Indication of failure, maintenance mode, maintenance request
Measurement range feedback	х	-	Index of the active measurement range
Measurement range configuration	Х	-	Measurement range limits (start and end value)
Measurement range drift values	х	-	Offset drift, amplification drift, delta offset drift, delta amplification drift
QAL3 calibration data	x	_	Setpoints and actual values, measuring range and date of last calibration (not available in analyzer modules Limas11, Uras14, Magnos16, Magnos106, Caldos15, Caldos17, and MultiFID14)

Modbus frames and functions

Data transfer	For data transfer a combination of frames is used, that consists of 1/0 information, united to one or more telegrams.			
Frame	The transfer values are decomposed in bytes (= 8 bit). Each of these bytes is completed by one start-bit, possibly one parity-bit (even number of "1") and one stop-bit. In the following description the term "byte" will be used, even if ten or eleven bits will be transferred including the start-, stop- and parity-bits.			
Telegrams	The Moc address	lbus telegrams consist of th (1 byte), function (1 byte), da	ne following frames: ata (n bytes) and check sum (2 bytes).	
	The teles master to transmith non ansy	grams also take on the "sha o slave must be responded ted. The computer has to ha wering bus participants (tim	ke-hands-function": each telegram from , before a new telegram is allowed to be ave in a adequate supervision, for excluding e-out-supervision).	
Admissible addresses	As addre	esses for the participants of	the bus the numbers 1 to 255 are admitted.	
	The address 0 is the global address (broadcast-address). When this address will be used in a telegram, all participants accept this telegram without an acknowledgment to the master.			
Functions	Code	Term	Function	
	01	Read coil status	Reading of binary values of type coil	
	02	Read input status	Reading of binary values of type status	
	03	Read holding registers	Reading of 16 bit holding-registers	
	04	Read input registers	Reading of 16 bit input-registers	
	05	Force single coil	Setting of a single binary value	
	06	Preset single register	Set of a single 16 bit-register; for DINT or REAL two telegrams are necessary	
	08	Loopback diagnostic test	Testing telegram for diagnostics of the communication capability of slave	
	15	Force multiple coils	Set of several successive binary values	
	16	Preset multiple registers	Set of several successive 16 bit-registers	
Check sum Transfer rules	The check sum is calculated over all bytes of one telegram without the start-, stop- and parity-bits. The neutral position of the data line corresponds with the logical "1".			
	A distance of more than 3.5 bytes, however at least 10 ms is defined as separation between two telegrams. For the beginning of the data transfer the neutral position of the data line must be observed.			

Modbus over TCP/IP

Integration	The AO2000 Modbus/TCP server expects requests from the current IP addresservia the communication port. A maximum of 4 clients can be connected to the Modbus/TCP server of an AO2000 at the same time. If the connection to a client breaks down, the connection status in the Modbus/TCP server is enabled again after a max. 60 seconds.			
Reading out data from the AO2000 Modbus/TCP server	 The following procedure must be executed on the Modbus client, in order to receive data from the AO2000 Modbus/TCP server: Establish a TCP connection to port 502 on the server. Create a Modbus request. Send the Modbus request incl. the Modbus/TCP MBAP Header. Wait for a response to the same TCP connection. Read the first 6 bytes of the response; these state the length of the response. Read the remaining bytes of the response. 			
Functions, addresses and registers	The supported functions and the addresses and registers of Modbus over TCP/IP are equivalent to those of Modbus over RS232/RS485.			

Modbus according to VDI 4201 Sheet 3

Function code

Function code 43 with MEI 14 (MEI = Modbus Encapsulated Interface) is used to read the device parameters to

- read measured values,
- transfer simulation data,
- apply reference material.

Address assignment of the device parameters for the function code 43 There is read access to the device parameters.

Measurement components are mapped with the following structure:

- Name
- Measurement range start
- Measurement range end
- Unit

The number of the first measured values register is listed under BasisM in the device parameters list.

The measured v	alue status is	s implemented	as NAMUR status:

Bit	Assignmant
0	Error
1	Maintenance
2	Maintenance request
3	Beyond specification
4	Test operation, simulation measured value transmitted
515	Reserved for extensions
1631	Vendor-specific

The number of the first simulation data register is listed under BasisS in the device parameters list.

The number of the register to apply reference material is listed under BasisR in the device parameters list. Maximum 32 Bus DIs are reserved for transferring reference material.

The register "status of application" is used for feedback of the DIs for which a hardware digital output is connected. When reference material is applied, the status "maintenance" is set and a message is displayed on the gas analyzer's screen.

Modbus according to VDI 4201 Sheet 3, continued

Name	Object ID	Encoding	Table	Attribute	Description
VendorName	0x00	String	System_control	Fabrication_number	Manufacturer name
ProductCode	0x01	String	System_control	Product_Code	Manufacturer- specific device identifier
MajorMinorRevision	0x02	String	System_control	Version	Software version of measuring system
ProductName	0x04	String	System_control	Product_Name	Device name
SerialNumber	0x80	String	System_control	SerialNumber	Serial number of measuring system
ComponentNumber	0x81	Word	Detector_para	Classification = 0	Number of measurands
BasisM	0x82	Word	Modbus_conf	Registernumber	First register of the measurands block
BasisS	0x83	Word	Modbus_conf	Registernumber	First register of the simulation data
BasisR	0x84	Word	Modbus_conf	Registernumber	First register of the reference material data
Component1_Name	0x85	String	Component_para	Name	Name of measured component 1
Component1_ Range_Start	0x86	Float	Meas_range_para	Lower_meas_range	Lower limit of output range of measured component 1
Component1_ Range_End	0x87	Float	Meas_range_para	Upper_meas_range	Upper limit of output range of measured component 1
Component1_Unit	0x88	String	Component_para	Unit_name	Unit of measured component 1
Component2_Name	0x89	String	Component_para	Name	Name of measured component 2
Component2_ Range_Start	0x8A	Float	Meas_range_para	Lower_meas_range	Lower limit of output range of measured component 2
Component2_ Range_End	0x8B	Float	Meas_range_para	Upper_meas_range	Upper limit of output range of measured component 2
Component2_Unit	0x8C	String	Component_para	Unit_name	Unit of measured component 2

Device parameters list

Reference material application

The Bus DIs used for reference material application are connected to the digital outputs used for calibration and described in the device documentation.

IEEE 754 format

Modbus protocol and IEEE 754 format

Construction of IEEE 754 format

The Modbus-protocol allows only 16-bit-registers as transfer values. Some of the AO2000 data is stored in the IEEE 754-Format (32 bit). For this reason the data must be processed by the interrogating device..

Term	Number of bits	Meaning
S	1	Sign bit; explains the sign $(0 = \text{positive}, 1 = \text{negative})$
E	8	Two's complement exponent. The true value is the exponent minus 127.
М	23	The "most significant bit" of the normalized mantissa before the decimal point is implicitly 1, but is not stored. The value range is also between 1.0 (included) and 2.0.

Example

The number -12.5 is stored as the hexadecimal value 0xC1480000. The following table shows the storage configuration:

Address	+0	+1	+2	+3
format	SEEEEEE	EMMMMMMM	MMMMMMM	MMMMMMMM
binary	11000001	01001000	00000000	00000000
hexadecimal	C1	48	00	00

Explanations

• The sign bit is 1, i.e. the value is negative.

- The exponent is 10000010 binary, which corresponds to the decimal value 130. Subtracting 127 from 130 leaves 3, which is the actual exponent.

Modbus addresses and data format

Principle	The AO2000 series gas analyzers are modular and very flexible. A gas analyzer can consist of one or more analyzer modules which in itself can measure one or more components. It is also possible to connect different kinds of I/O-modules and I/O-boards to a device. For this reason the Modbus addressing schema is not static.
Data format	There are six flexible groups, four configurable groups and two fixed length groups of information defined in a AO2000 gas analyzer.
	The grouped information can be read through "Single Modbus Request".
Flexible groups	The flexible groups are:
	 Measurement values (see page 12) Analog inputs (see page 12) Analog outputs (see page 13) Digital inputs (see page 13) Digital outputs (see page 14) Measurement range feedback (see page 17) Measurement range configuration (see page 18) Measurement range drift values (see page 19) QAL3 calibration data (see page 21)
	Each flexible group has a fixed start address and, depending on the system layout, a variable number of elements.
Configurable groups	The configurable groups are:
	 Bus analog inputs (see page 14) Bus analog outputs (see page 15) Bus digital inputs (see page 15) Bus digital outputs (see page 15)
	Each configurable group has a fixed start address and, depending on the user configuration, a variable number of elements.
Fixed length groups	The fixed length groups are:
	Configuration display (see page 16)Status (see page 16)

Measurement values The measurement values are transmitted in the IEEE 32 bit standard floating point format. The floating point format is not a part of the Modbus specification. AO2000 devices use two word registers to represent a floating point value (high word, low word).

Modicon Modbus address	Туре	Register number	Description/name
30001	Input register	0	Measurement Component 1
30002		1	
30003	Input register	2	Measurement Component 2
30004		3	
30005	Input register	4	Measurement Component 3
30006		5	
30007	Input register	6	Measurement Component 4
30008		7	
30009	Input register	8	Measurement Component 5
30010		9	
30011	Input register	10	Measurement Component 6
30012		11	
			etc.

Analog inputs

Analog inputs (AI) are transmitted in the IEEE 32 bit standard floating point format. The floating point format is not a part of the Modbus specification. AO2000 devices use two word registers to represent a floating point value (high word, low word).

Modicon Modbus address	Туре	Register number	Description/name
30100	Input register	99	Analog Input 1 V-in
30101		100	
30102	Input register	101	Analog Input 1 I-in
30103		102	
30104	Input register	103	Analog Input 2 V-in
30105		104	
30106	Input register	105	Analog Input 2 I-in
30107		106	
30108	Input register	107	Analog Input 3 V-in
30109		108	
30110	Input register	109	Analog Input 3 I-in
30111		110	
30112	Input register	111	Analog Input 4 V-in
30113		112	
30114	Input register	113	Analog Input 4 I-in
30115		114	
			etc.

Continued on next page

Technical Information AO2000 Modbus and AO-MDDE

30/24-316 EN Rev. 6

Analog outputs Analog outputs (AO) are transmitted in the IEEE 32 bit standard floating point format. The floating point format is not a part of the Modbus specification. AO2000 devices use two word registers to represent a floating point value (high word, low word).

Modicon Modbus	Туре	Register	Description/name
20200	Input register	200	Apolog Output 1
30300	input register	299	Analog Output 1
30301		300	
30302	Input register	301	Analog Output 2
30303		302	
30304	Input register	303	Analog Output 3
30305		304	
30306	Input register	305	Analog Output 4
30307		306	
30308	Input register	307	Analog Output 5
30309		308	
30310	Input register	309	Analog Output 6
30311		310	
30312	Input register	311	Analog Output 7
30313		312	
30314	Input register	313	Analog Output 8
30315		314	
			etc.

Digital inputs

The Modbus master has only read access to digital input values (DI).

Modicon Modbus address	Туре	Input number	Description/name
10016	Input status	15	Syscon DI purge
10017	Input status	16	Digital Input 1
10018	Input status	17	Digital Input 2
10019	Input status	18	Digital Input 3
10020	Input status	19	Digital Input 4
10021	Input status	20	Digital Input 5
10022	Input status	21	Digital Input 6
10023	Input status	22	Digital Input 7
10024	Input status	23	Digital Input 8
			etc.

Modbus addresses and data format, continued

Modicon Modbus address	Туре	Input number	Description/name
11036	Input status	1035	Digital Output 1
11037	Input status	1036	Digital Output 2
11038	Input status	1037	Digital Output 3
11039	Input status	1038	Digital Output 4
11040	Input status	1039	Digital Output 5
11041	Input status	1040	Digital Output 6
11042	Input status	1041	Digital Output 7
11043	Input status	1042	Digital Output 8
			etc.

The Modbus master has only read access to digital output values (DO).

Digital outputs

Bus analog inputs Bus analog inputs (Bus AI) are transmitted in the IEEE 32 bit standard floating point format. The floating point format is not a part of the Modbus specification. AO2000 devices use two word registers to represent a floating point value (high word, low word).

Bus Als can be read and written by the Modbus Master. They can be used like physical ("real") Als when configuring function blocks ¹⁾. The Master has access to the configured variables (holding register) and uses function code 3 to read them. Due to the 32-bit register, the variables can only be written using function code 16. A maximum of 50 Bus Als can be configured.

A waiting period of 250 msec per analog input should be observed after writing the Bus Als.

Modicon Modbus address	Туре	Register number	Description/name
40001	Holding register	0	Bus AI 1
40002		1	
40003	Holding register	2	Bus AI 2
40004		3	
	Holding register		Bus AI …
40099	Holding register	98	Bus AI 50
40100		99	

 A detailed description of the "Function block" concept and detailed descriptions of the individual function blocks can be found in the technical information "Function blocks – descriptions and configuration".

Bus analog outputs Bus analog outputs (Bus AO) are transmitted in the IEEE 32 bit standard floating point format. The floating point format is not a part of the Modbus specification. AO2000 devices use two word registers to represent a floating point value (high word, low word).

Bus AOs can be used like physical ("real") AOs when configuring function blocks. A maximum of 50 Bus AOs can be configured.

Modicon Modbus address	Туре	Register number	Description/name
30600	Input register	599	Bus AO 1
30601		600	
30602	Input register	601	Bus AO 2
30603		602	
	Input register		Bus AO
30698	Input register	697	Bus AO 50
30699		698	

Bus digital inputs Bus digital inputs (Bus DI) are bit variables in the gas analyzer. The Modbus master has read and write access to these variables.

Bus DIs can be used like physical ("real") DIs when configuring function blocks. The master has access to all configured variables and uses function code 1 to read and 5 or 15 to write the variables. A maximum of 50 Bus DIs can be configured.

Modicon Modbus address	Туре	Coil number	Description/name
1	Coil status	0	Bus DI 1
2	Coil status	1	Bus DI 2
3	Coil status	2	Bus DI 3
	Coil status		Bus DI
50	Coil status	49	Bus DI 50

Bus digital outputs Bus digital outputs (Bus DO) are bit variables in the gas analyzer which can only be read by the Modbus master.

Bus DOs can be used like physical ("real") DOs when configuring function blocks. A maximum of 50 Bus DOs can be configured.

Modicon Modbus address	Туре	Input number	Description/name
12060	Input status	2059	Modbus DO 1
12061	Input status	2060	Modbus DO 2
12062	Input status	2061	Modbus DO 3
	Input status		Modbus DO
12109	Input status	2108	Modbus DO 50

Configuration

The Modbus has read access to the configuration register. By means of the this register, a Master can determine how many components, Als, AOs, etc. have been installed in the gas analyzer. The data are represented as 16-bit integers.

Modicon Modbus address	Туре	Register number	Description/name
30500	Input register	499	Number of components
30501	Input register	500	Number of Als
30502	Input register	501	Number of AOs
30503	Input register	502	Number of DIs
30504	Input register	503	Number of DOs
30505	Input register	504	Number of Modbus Als
30506	Input register	505	Number of Modbus AOs
30507	Input register	506	Number of Modbus DIs
30508	Input register	507	Number of Modbus DOs
30509	Input register	508	Number of QAL3 component entries

Status

The Modbus has read access to the three status values.

Modicon Modbus address	Туре	Input number	Description/name
10001	Input status	0	Failure
10002	Input status	1	Maintenance mode
10003	Input status	2	Maintenance request

Measurement range feedback

Measurement range feedback

Modbus will deliver one input register per configured sample component. This input will reflect the index 1 to 4 of the active measurement range.

Modicon Modbus address	Туре	Input number	Description/name
32000	Input register	1999	Component 1 Active range no.
32001	Input register	2000	Component 2 Active range no.
32002	Input register	2001	Component 3 Active range no.
32003	Input register	2002	Component 4 Active range no.
32004	Input register	2003	Component 5 Active range no.
32005	Input register	2004	Component 6 Active range no.
32006	Input register	2005	Component 7 Active range no.

Measurement range configuration

Structure of measurement range configuration

Addresses of the parameters

The range parameters are listed in order of the configured main components. For one component the system will always install structures for four ranges, even if a lower number of ranges is configured. Only the structures representing configured ranges are valid.

The range limits are sent via Modbus as displayed on HMI. The number of places is limited to the maximal supported number of places for the current measuring range span.

Every floating point value is transferred in two input registers (high word, low word).

Start index +	Name	Туре	Meaning
0, 1	Range 1 Zero	Integer16	Zero value for range 1 (Range start)
2, 3	Range 1 Span	Integer16	Span value for range 1 (Range end)
4, 5	Range 2 Zero	Integer16	Zero value for range 2 (Range start)
6, 7	Range 2 Span	Integer16	Span value for range 2 (Range end)
8, 9	Range 3 Zero	Integer16	Zero value for range 3 (Range start)
10, 11	Range 3 Span	Integer16	Span value for range 3 (Range end)
12, 13	Range 4 Zero	Integer16	Zero value for range 4 (Range start)
14, 15	Range 4 Span	Integer16	Span value for range 4 (Range end)

address	туре	Register number	Description/name
32100	Input register	2099	Component 1
32101		2100	Range 1 Zero
32102	Input register	2101	Component 1
32103		2102	Range 1 Span
32104	Input register	2103	Component 1
32105		2104	Range 2 Zero
32106	Input register	2105	Component 1
32107		2106	Range 2 Span
32108	Input register	2107	Component 1
32109		2108	Range 3 Zero
32110	Input register	2109	Component 1
32111		2110	Range 3 Span
32112	Input register	2111	Component 1
32113		2112	Range 4 Zero
32114	Input register	2113	Component 1
32115		2114	Range 4 Span
32116	Input register	2115	Component 2
32117		2116	Range 1 Zero
32118	Input register	2117	Component 2
32119		2118	Range 1 Span

Technical Information AO2000 Modbus and AO-MDDE 30/24

Measurement range drift values

Structure of range drift values

The range parameters are listed in order of the configured main components. For one component the system will always install structures for four ranges, even if a lower number of ranges is configured. Only the structures representing configured ranges are valid.

Every floating point value is transferred in two input registers (high word, low word).

Start	Name	Туре	Meaning
index +			
0, 1	Range 1 Offs	Integer16	Offset drift range 1
2, 3	Range 1 Ampl	Integer16	Amplification drift range 1
4, 5	Range 1 DeltaOffs	Integer16	Delta offset drift range 1
6, 7	Range 1 DeltaAmpl	Integer16	Delta amplification drift range 1
8, 9	Range 2 Offs	Integer16	Offset drift range 2
10, 11	Range 2 Ampl	Integer16	Amplification drift range 2
12, 13	Range 2 DeltaOffs	Integer16	Delta offset drift range 2
14, 15	Range 2 DeltaAmpl	Integer16	Delta amplification drift range 2
16, 17	Range 3 Offs	Integer16	Offset drift range 3
18, 19	Range 3 Ampl	Integer16	Amplification drift range 3
20, 21	Range 3 DeltaOffs	Integer16	Delta offset drift range 3
22, 23	Range 3 DeltaAmpl	Integer16	Delta amplification drift range 3
24, 25	Range 4 Offs	Integer16	Offset drift range 4
26, 27	Range 4 Ampl	Integer16	Amplification drift range 4
28, 29	Range 4 DeltaOffs	Integer16	Delta offset drift range 4
30, 31	Range 4 DeltaAmpl	Integer16	Delta amplification drift range 4

Measurement range drift values, continued

Addresses of the parameters	Modicon Modbus address	Туре	Register number	Description/name
	33000 33001	Input register	2999 3000	Component 1 Range 1 offset drift
	33002 33003	Input register	3001 3002	Component 1 Range 1 amplification drift
	33004 33005	Input register	3003 3004	Component 1 Range 1 delta offset drift
	33006 33007	Input register	3005 3006	Component 1 Range 1 delta ampl. drift
	33008 33009	Input register	3007 3008	Component 1 Range 2 offset drift
	33010 33011	Input register	3009 3010	Component 1 Range 2 amplification drift
	33012 33013	Input register	3011 3012	Component 1 Range 2 delta offset drift
	33014 33015	Input register	3013 3014	Component 1 Range 2 delta ampl. drift
	33016 33017	Input register	3015 3016	Component 1 Range 3 offset drift
	33018 33019	Input register	3017 3018	Component 1 Range 3 amplification drift
	33020 33021	Input register	3019 3020	Component 1 Range 3 delta offset drift
	33022 33023	Input register	3021 3022	Component 1 Range 3 delta ampl. drift
	33024 33025	Input register	3023 3024	Component 1 Range 4 offset drift
	33026 33027	Input register	3025 3026	Component 1 Range 4 amplification drift
	33028 33029	Input register	3027 3028	Component 1 Range 4 delta offset drift
	33030 33031	Input register	3029 3030	Component 1 Range 4 delta ampl. drift
	33032 33033	Input register	3031 3032	Component 2 Range 1 offset drift

Mapping the calibration data for QAL3

Reading out the
calibration dataThe Modbus interface includes a structure for each component which enables the
setpoints and actual values, the measuring range and the date of the last
calibration to be read out.

The system time of the AO2000 is used as a time-stamp. If a calibration has not yet been carried out, 0 is transmitted as a time-stamp and 0 as a measuring range.

The time-stamp of the structure must be periodically read at least, in order to record a change.

The setpoints and the actual values are transmitted in the unit of the measured value. If the unit of the component is changed, the transmitted values are also changed.

Mapping the
calibration dataThe following parameters are made available for each component via the Modbus.All the registers are based on a Modbus 16-bit "input register".

The setpoints and actual values are transmitted in the IEEE 32-bit floating-point format. Two word registers are used to represent a floating-point value.

The measuring range is transmitted as a consecutive number 1-4.

Start index +	Name	Туре	Meaning
0	Zero Date 1	Integer16	Date part 1 of the zero point calibration Day / month (day \times 100 + month)
1	Zero Date 2	Integer16	Date part 2 of the zero point calibration Year (4-digit year number)
2	Zero Time 1	Integer16	Time part 1 of the zero point calibration Hour / minute (hr. \times 100 + min.)
3	Zero Time 2	Integer16	Time part 2 and measuring range number of the zero point calibration Second / MR no. (Sec. × 100 + MR no.)
4, 5	Setpoint Zero	Float32	Setpoint of the zero point calibration (IEEE 32-bit format)
6, 7	Value Zero	Float32	Actual value of the zero point calibration (IEEE 32-bit format)
8	Span Date 1	Integer16	Date part 1 of the span calibration Day / month (day \times 100 + month)
9	Span Date 2	Integer16	Date part 2 of the span calibration Year (4-digit year number)
10	Span Time 1	Integer16	Time part 1 of the span calibration Hour / minute (hr. \times 100 + min.)
11	Span Time 2	Integer16	Time part 2 and measuring range number of the span calibration Second / MR no. (Sec. \times 100 + MR no.)
12, 13	Setpoint Span	Float32	Setpoint of the span calibration (IEEE 32-bit format)
14, 15	Value Span	Float32	Actual value of the span calibration (IEEE 32-bit format)

Mapping the calibration data for QAL3, continued

Addresses of the parameters	Modicon Modbus address	Туре	Register number	Description/name
	30800	Input register	799	Component 1 Zero calibration day / month
	30801	Input register	800	Component 1 Zero calibration year
	30802	Input register	801	Component 1 Zero calibration hour / minute
	30803	Input register	802	Component 1 Zero calibration second / range no.
	30804	Input register	803	Component 1 Zero calibration
	30805		804	setpoint
	30806	Input register	805	Component 1 Zero calibration
	30807		806	actual value
	30808	Input register	807	Component 1 Span calibration day / month
	30809	Input register	808	Component 1 Span calibration year
	30810	Input register	809	Component 1 Span calibration hour / minute
	30811	Input register	810	Component 1 Span calibration second / range no.
	30812	Input register	811	Component 1 Span calibration
	30813		812	setpoint
	30814	Input register	813	Component 1 Span calibration
	30815		814	actual value
	30816	Input register	815	Component 2 Zero calibration day / month

Mapping the calibration data for QAL3, continued

Figure 1

Example of a transmission with Modbus DDE server

😫 Optima M-DDE Server 2.00 📃 🗔 🔀						
Datei Gerät Hilfe						
Bezeichnung	Adresse	Register	Wert	Beschreibung		
K1SetpointSpan	#1	811	3486,0181	Komp 1 Sollwert EP Kal		
K1SetpointZero	#1	803	134,3499	Komp 1 Sollwert NP Kal		
K1SpanDate1	#1	807	2007	Komp 1 Datum Tag/Monat EP Kal		
K1SpanDate2	#1	808	2010	Komp 1 Datum Jahr EP Kal		
K1SpanTime1	#1	809	1331	Komp 1 Zeit Std/Min EP Kal		
K1SpanTime2	#1	810	3501	Komp 1 Zeit Min/Messbereich EP Kal		
K1ValueSpan	#1	813	9963,1553	Komp 1 Istwert Ep Kal		
K1ValueZero	#1	805	397,0912	Komp 1 Istwert NP Kal		
K1ZeroDate1	#1	799	2007	Komp 1 Datum Tag/Monat NP Kal		
K1ZeroDate2	#1	800	2010	Komp 1 Datum Jahr NP Kal		
K1ZeroTime1	#1	801	1329	Komp 1 Zeit Std/Min NP Kal		
K1ZeroTime2	#1	802	3001	Komp 1 Zeit Min/Messbereich NP Kal		
Komp1	#1	0	133,8980	Komponente 1		
<	1		1			
Online TX: 911 T	imeouts: 1		COM1	1 Gerätedateien geladen.		

Data of a calibration read with the Modbus DDE server (see also page 35):

Current measured value of component 1 133.8980 [unit of component 1] Last calibration:

Component 1 at zero point Measuring range 1 on 20.07.2010 at 13:29:30 Setpoint 134.3499 [Unit of component 1] Actual value 397.0912 [Unit of component 1] Component 1 at end-point Measuring range 1 on 20.07.2010 at 13:31:35 Setpoint 3486.0181 [Unit of component 1] Actual value 9963.1553 [Unit of component 1]

The function "Mapping the calibration data for QAL3" is not available in these analyzer modules: Limas11, Uras14, Magnos16, Magnos106, Caldos15, Caldos17, and MultiFID14.

٦

Chapter 2 Setting Modbus parameters

Modbus parameters

Menu path	MENU \rightarrow Configure \rightarrow System \rightarrow Network \rightarrow Modbus
Figure 2	CONFIG: NETWORK MODBUS
Modbus configuration	A02000
IN AO2000	Modbus address: 1
	Modbus type: RS232 Modbus haudeste: 10200
	Modbus paritic pope
	Modbus stopbits: 1
	Modbus map >>>
	Select parameter that should be configured! Acknowledge: <enter></enter>
Function	The gas analyzer can be connected to a network with Modbus protocol via the RS232 or the RS485 interface.
	The RS232/RS485 module must be installed in the gas analyzer. Only then the Modbus menu item is displayed.
	As an alternative, the Ethernet 10/100BASE-T interface can be used for data transmission via Modbus TCP/IP protocol (from software version 5.1, see page 7).
Parameters	The Modbus address can be set in the 1-255 range.
	For Modbus type, select the interface which connects the gas analyzer to the Modbus network (RS232 or RS485).
	The data transfer default settings are shown in Figure 2.
	The Modbus map provides an overview of the addresses of the Modbus registers (from software version 5.1, see page 25).
Request interval	The request response of AO2000 is < 500 ms. Therefore the times for the time-out supervision in the master should be > 500 ms (recommendation: 1 s). Between two faultless requests a minimum waiting time of \geq 100 ms needs to be kept.

Address overview in the AO2000 menu (software version \geq 5.1)

"Modbus map" sub-menu

Figure 3

Modbus

The "Modbus map" sub-menu is integrated in the menu Configure \rightarrow System \rightarrow Network \rightarrow Modbus, in order to provide an overview of the addresses of the Modbus registers.

Entry to the Modbus map menu with a Modbus module installed:

CONFIG: NETWORK MODBUS AO 200 configuration menu Modbus address: 1 Modbus type: RS232 Modbus baudrate: 19200 Modbus parity: none Modbus stopbits: 1 Modbus map >>> Select parameter that should be configured! Adknowledge: <ENTER> λŝ ENTER ν

> If a Modbus module has not been installed, the Modbus map menu is directly available in the network menu:

Address overview in the AO2000 menu (software version \geq 5.1),

continued

Figure 5

Sub-menu for displaying the

Modbus registers

In both cases, the sub-menu for displaying the Modbus registers is called by pressing the ENTER key.

This general menu is subdivided into the Modbus main register groups:

- Input register (input)
- Status
- Holding register (holding)
- Coils

The AO2000 elements associated with the respective group and their number are listed in the Modbus register groups. If the number is > 0, elements exist, and the respective menu can be called by pressing the ENTER key (see the following example).

Figure 6

Example: Modbus analog outputs

299	Lout 4:74	
	10011.74	AIO:X26 IO-Module 4
301	l out 2:76	AIO:X26 IO-Module 4
303	CO:82	AIO:X24 IO-Module 3
305	CO2:84	AIO:X24 IO-Module 3
307	NO:86	AIO:X24 IO-Module 3
309	02:88	AIO:X24 IO-Module 3

The following are displayed:

- The Modbus register number
- The name of the AO2000 function block with number
- The name of the I/O module

Address overview in the AO2000 menu (software version \geq 5.1),

continued

Figure 7

Example:

An overview line with the component name followed by the parameters associated with this component are shown in the calibration data display:

Action required to generate or delete components

If the generation or deletion of sample components has been provided for in the configuration of a measuring detector (currently only in Fidas24), this results in a change to the analyzer configuration and therefore also in a change in the number and registers of the measured values. A generated component is added to the components of the associated detector. All the other components are consequently shifted.

Modbus address assignment (software version < 5.1)

the gas analyzer.

Assigning input and output signals to Modbus addresses

The assignment of input and output signals to Modbus addresses depends on

- the number of input and output signals available on the I/O modules and I/O boards in the gas analyzer and
 the sequence in which the I/O modules and I/O boards have been registered in
- ſi

All existing inputs and outputs are mapped to the Modbus irrespective of their assignment to signals.

Note: The Modbus address assignment does not depend on the slot on which the I/O modules and I/O boards are installed.

Procedure

In principle proceed as follows to assign input and output signals to Modbus addresses for software versions < 5.1:

Step	Action
1	Determine the sequence of the I/O modules and I/O boards.
2	Determine the respective numbers of the input and output signals.
3	Assign input and output signals to Modbus addresses.

Step 1: Determine the
sequence of the
I/O modules and
I/O boards.

Use the system overview menu item to determine the sequence in which the I/O modules and I/O boards have been registered in the gas analyzer (see Fig. 8).

Menu path: **MENU** \rightarrow **Diagnostic/Information** \rightarrow **System overview**

Figure 8	DIAGN	.: SYSTEM	OVERVIEW		400000
System overview (Example)		Module Type	Module Name	Software Version	~~2000
		DIO	IO-Module 3	V 0.0.0.7 10/10/2002	
		AIO	IO-Module 2	V 0.0.0.7 10/10/2002	
		Modbus	IO-Module 1	V 0.0.0.7 10/10/2002	
		DIO	IO-Board 3	V 1.2.0 11/10/1997 _V	
	Selectimo Acknowle	odule for further dge: <enter></enter>	information!		
	Λ	<u> </u>	^ V ^ V	EN	TER

Modbus address assignment (software version < 5.1), continued

Step 2: Determine the numbers of the input and output signals

The numbers of the input and output signals can be obtained from the digital and analog input and output function block lists.

Menu path (example, see also Fig. 2): MENU \rightarrow Configure \rightarrow Function blocks \rightarrow Inputs \rightarrow Digital input

The inputs and outputs are listed in the registration sequence from the bottom up. Enumerate the list accordingly from the bottom up to determine the number of an input or output signal.

In the example shown in Fig. 9, digital input 2 on digital I/O board 3 has the consecutive number 7.

Figure 9	CONF	IG.:DIGITAL	INPU1		
Digital input function blocks		Digital input	No.	Device	
(example)		D In 2:188	2	DIO:X13 IO-Board 3	
		D In 1:187	1	DIO:X13 IO-Board 3	
		ExtCalSp:64	4	DIO:X24 IO-Module 3	
		ExtCaZo:63	3	DIO:X24 IO-Module 3	
		Disable:62	2	DIO:X24 IO-Module 3	
		Start:61	1	DIO:X24 IO-Module 3	
		Purge:36	1	SYSCON: SYST. CPU 🚽	
	Select fu Acknowl	unction block to co edge: <enter></enter>	n figure !		
	,	<u> </u>	^	v v EN	TER

Step 3: Assign input and output signals to Modbus addresses

Assign the number determined in step 2 to a Modbus address in that Modbus address list which corresponds to the input or output signal type. Enumerate this list top down to determine the address.

In the digital input address list (see page 13), Modbus address 10022 is assigned to number 7 determined in the above example.

Chapter 3 Modbus connection

Connection via the RS232 interface

Connecting

Connect the Modbus master to the RS232 interface of the gas analyzer. This connection only provides a point to point access (e.g. AO2000 and a PC, see Fig. 10).

Figure 10 Connection via the RS232 interface

Figure 11

Pin configuration of the AO2000 RS232 interface

2 RxD 3 TxD 5 GND

Type: 9-pin male Sub-D connector

Materials needed

A cable with two 9-pin female Sub-D connectors, pins 2 and 3 twisted pair, is needed for connecting.

Connection via the RS485 interface

Connecting

In a network up to 32 gas analyzers may be connected to a PC via the RS485 interface.

The network uses a bus topology which needs to be terminated via a RC termination plugs (see Figure 12). This is also true for a point to point connection.

Figure 12

Connection via the RS485 interface

Figure 13 Pin configuration of the AO2000 RS485 interface	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Materials needed	See Section "Components for RS485 Connection", page 33.	
Cable type	A three lines twisted pair cable e.g. Thomas & Betts Type LiYCY, 0.25 mm ² is used for the Modbus connection. The max. cable length is limited to 1200 m.	ł
Signal converter	f the PC has no RS485 interface, an RS232/RS485 signal converter must be inked between the PC and the Modbus network.	
	Continued on next pag	е

Connection via the RS485 interface, continued

Technical details are depicted in Fig. 8. Note the input circuit of a Modbus slave.

Any internal termination need to be disconnected. AC termination is only allowed at the cable ends using the RC termination plugs.

You can also use other cables and connectors as long as they correspond to the specifications in Fig. 14.

Cable ends with RC termination plugs

Components for RS485 connection

Catalog No. 24009-4-0746617

Catalog No. 24009-4-0746616

Components for RS485 connection, continued

Modbus connections with user defined cable length When using this type of cable one has to specify the desired length. Furthermore the connectors and the cable come as a set that need to be assembled. Two types of cables can be assembled.

- connection between two T-connections (pin connectors at each end)
- extension cord (pin and socket connector)

Cable with variable length Pin connector Socket connector

5,0 m

24009-4-0746621

Catalog No. 24009-4-0746622 24009-4-0746318 24009-4-0746471

Cables with predefined length

This option allows ordering cables of three different lengths. The cable can be used to connect two T-connections.

Figure 18

Cables with predefined length

Description

ApplicationThe AO-MDDE server is an effective and easy-to-use tool for integrating AO2000
signals into standard software through the RS232 or the RS485 interface (AO-
MDDE does not support Modbus over TCP/IP). Measured values, status signals
and the signals of the analog and digital inputs and outputs can be easily
integrated e.g. in Microsoft Excel or Microsoft Visual Basic and visualized.

AO-MDDE can be downloaded from the CD-ROM which is delivered together with each gas analyzer.

Program files	Optimdde.exe Optimdde.hlp Aodef.ddb Aodef_Komp20.ddb	DDE server Help file for DDE server Device description for AO2000 from SW Version 3.0 Device description for AO2000 from SW Version 3.0 for integration into existing Modbus applications for Advance Optima with SW Versions < 2.0
	AODEF_FULL.DDB	Device file with all possible Modbus data (not executable with DDE server, since the size of the device file is restricted)
	AODEFQAL3.DDB	Device file with QAL3 structures (without bus I/Os, since the size of the device file is restricted in the DDE server)
	AOMDDEMO.EXE AO-DDESE.XLS LVWUTIL32.DLL	Demo program based on LabVIEW Demo program based on Excel Program file for LabVIEW demo program

Both demo programs are intended to show by example how AO2000 can be linked to standard PC programs. Neither the transfer nor the storage of data can be regarded as fail-safe. Modbus knowledge is not necessary for demo program operation. Demo programs do not support Modbus over TCP/IP. ABB offers no support for the demo programs.

Description, continued

Transferred data	Read	Write	Example
Measurement values	х	-	CO, NO, H ₂ , etc.
Analog inputs	х	_	Indication of mA-values of external analyzers
Analog outputs	х	-	Indication of mA-values of measurement values or calculated values (function block application)
Digital inputs	х	-	Indication of external status signals
Digital outputs	х	-	Measurement range feedback, indication of solenoid or pump controls
Bus analog inputs	х	х	Entering analog values into the function block application
Bus analog outputs	х	-	Outputting analog values from the function block application
Bus digital inputs	х	Х	Control of functions such as auto calibration, measuring range control, etc. after function block configuration
Bus digital outputs	х	-	Indication of all functions integrated by function block configuration such as alarm signaling etc.
Modbus configuration	х	-	Indication how many components, AOs, DOs, etc. have been configured or are in the gas analyzer
Status signals	х	_	Indication of failure, maintenance mode, maintenance request
Qal3 calibration data	x	-	Setpoints and actual values, measuring range and date of last calibration (not available in analyzer modules Limas11, Uras14, Magnos16, Magnos106, Caldos15, Caldos17, and MultiFID14)

Installation

Installing AO-MDDE	Step	Action
	1	Insert the CD-ROM with the AO-MDDE program.
	2	Run the "AO_MDDEE.EXE" file.
	3	Follow the instructions of the installation program.
		Accept the recommendation of the installation program for the name of the folder in which AO-MDDE shall be installed.

AO-MDDE start

Start the AO-MDDE server in the Start menu or by running the program OPTIMDDE.EXE. Please refer to the integrated help function for further information about AO-MDDE.

Check that the bus transfer rates on the gas analyzer and the PC are identical.

Open the device description AODEF.DDB or AODEF_KOMP20.DDB and select the desired variables (see Figure 19). After this the data are transferred (see Figure 20).

Figure 19

Selection of variables (example)

election of variables		<u>? ×</u>
AOa_MBDI	AOa_MBDO AOa_MB/	
AUA_STA_ERR		
Modbus address:	≠ 1 💌 Handling of <u>3</u> 2-bit c	lata: SwapRegister 💌
<u>C</u> ycletime:	5000	
Device description:	Program Files\AdvanceSystemTools\Optima	M-DDE\Aodef.ddb
# Measuri	ng values	▲
	Component 1	
IDE Komp2	Component 2	
🕗 Котр З	Component 3	
🕗 Komp 4	Component 4	
🖉 Komp5	Component 5	
🖉 Komp6	Component 6	
🖉 Komp 7	Component 7	_
🕗 Komp 8	Component 8	
•		Þ
	<u>∭</u> rite <u>R</u> ead <u>Clipb</u>	oard
	OK Abbrechen	Übernehmen Hilfe

Figure 20

Device description (example)

🔓 Optima M-DDE Server 2.00					
File Device Help					
Name	Address	Register	Value	Description	Timeouts
DANZ_AO	#1	501	4	Number of AOs	0
DANZ_DI	#1	502	7	Number of DIs	0
DANZ_DO	#1	503	6	Number of DOs	0
FAIL	#1	0	1	Error	0
FUNCTION	#1	1	0	Maintenance mode	0
I/OKarteO1	#1	303	0,0000	Analog Output 3	0
I/OKarteO2	#1	305	4,0200	Analog Output 4	0
Komp1	#1	0	20,9009	Component 1	0
Komp2	#1	2	-1,5820	Component 2	0
MAINT	#1	2	1	Maintenance req	0
Online TX: 1201 Timeouts: 0 COM2 1 device descriptions loaded.					

LabVIEW demo program

Application	The LabVIEW demo program presents a possible digital and trend display for data visualization.
LabVIEW demo program start	Start the demo program in the Start menu or by opening the file AOMDDEMO.EXE on your PC. The AO-MDDE server is started automatically by the demo program.
Basic settings in AO-MDDE server	 In the "File → Open device description" menu: Open the device description file.

 In the "Device → Communication parameters..." menu: Deactivate the function "Bundle couple of registers" on the "Protocol" tab.

Figure 21

LabVIEW demo program (example)

Excel demo program

Excel demo program start

Start the demo program in the Start menu or by opening the file AO-DDESE.XLS on your PC. The AO-MDDE server is started automatically by the demo program.

Basic settings in **AO-MDDE** server

Figure 22

(example)

- In the "File \rightarrow Open device description..." menu: Open the device description file.
- In the "Device \rightarrow Communication parameters..." menu: Deactivate the function "Bundle couple of registers" on the "Protocol" tab.

Integration of information

The integration of information into standard software such as Microsoft Excel is straightforward: Select the required data field in AO-MDDE (see Fig. 19), copy it to the clipboard, select the required program, paste - and the data should appear and be ready for further processing. Please refer to the integrated help function for further information about AO-MDDE.

ABB has Sales & Customer Support expertise in over 100 countries worldwide.

www.abb.com

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

Printed in the Fed. Rep. of Germany (03.17)

© ABB 2017

ABB Automation GmbH Analytical Stierstaedter Strasse 5

60488 Frankfurt am Main Germany Fax: +49 69 7930-4566 E-Mail: cga@de.abb.com