

ABB MEASUREMENT & ANALYTICS | COMMISSIONING INSTRUCTION | CI/AWT210-EN REV. G

# **AWT210**

# 2-wire conductivity, pH/ORP pION transmitter



# Measurement made easy

## AWT210 2-wire transmitter

# Introduction

This Commissioning Instruction provides basic installation, operation and software information for the AWT210 2-wire transmitter. The transmitter is fully compatible with ABB's range of pH and redox (ORP) electrodes and with ABB's range of 2-electrode, 4-electrode and toroidal sensors. The transmitter has automatic temperature sensor recognition for Pt100, Pt1000 and 3k Balco RTDs in either 2-lead or 3-lead configurations.

The AWT210 transmitter is available with a traditional 4 to 20 mA output or with advanced digital communications utilizing FOUNDATION Fieldbus (FF), PROFIBUS PA (PA) or HART. The transmitter is equipped with an LCD display used to show the current process data and 4 keys beneath the display enable the transmitter to be configured locally.

# For more information

Further publications for the AWT210 transmitter are available for free download from:

www.abb.com/measurement

or by scanning this code:



Links and reference numbers for the transmitter publications are also shown below:

### Search for or click on:

| AWT210 transmitter – Data Sheet            | DS/AWT210-EN |
|--------------------------------------------|--------------|
| AWT210 transmitter – Operating Instruction | OI/AWT210-EN |
| AWT210 transmitter –                       | COM/AWT210/  |
| HART Communications Supplement             | HART-EN      |
| AWT210 transmitter –                       | COM/AWT210/  |
| HART FDS Communications Supplement         | HART/FDS-EN  |
| AWT210 transmitter –                       | COM/AWT210/  |
| PROFIBUS Communications Supplement         | PROFIBUS-EN  |
| AWT210 transmitter –                       | COM/AWT210/  |
| FIELDBUS Communications Supplement         | FIELDBUS-EN  |
|                                            |              |

# Contents

| 1 | Health & Safety 4                                     | 5 | Mechanical installation                     | 11 |
|---|-------------------------------------------------------|---|---------------------------------------------|----|
|   | Document symbols4                                     |   | Sensor installation                         | 11 |
|   | Safety precautions 4                                  |   | Transmitter installation                    | 11 |
|   | Potential safety hazards 4                            |   | Transmitter dimensions                      | 11 |
|   | AWT210 transmitter – electrical4                      |   | Fitting communication modules               | 11 |
|   | Safety standards                                      |   | Location                                    | 11 |
|   | Product symbols 4                                     |   | Optional accessories                        | 11 |
|   | Product recycling and disposal (Europe only)5         |   | Wall mounting                               | 12 |
|   | End-of-life battery disposal5                         |   | Panel mounting (optional)                   |    |
|   | Information on ROHS Directive 2011/65/EU (RoHS II) .5 |   | Pipe mounting (optional)                    | 14 |
| 2 | Cyber security5                                       | 6 | Electrical installation                     | 15 |
|   |                                                       |   | Terminal connections                        | 15 |
| 3 | Overview6                                             |   | pH/ORP/pION sensor module connections       | 16 |
|   | Name plate/certification label 6                      |   | Standard sensors without diagnostic         |    |
|   | Transmitters without hazardous area approval . 6      |   | functions                                   | 16 |
|   | Transmitters with FM/CSA approval and ATEX            |   | Standard sensors with diagnostic functions. | 16 |
|   | IECEx6                                                |   | BNC adaptor option                          | 16 |
|   |                                                       |   | Conductivity sensor module connections      | 17 |
| 4 | Hazardous area considerations                         |   | 2-electrode sensors                         | 17 |
|   | Approvals7                                            |   | 4-electrode sensors                         | 17 |
|   | CE Mark                                               |   | Toroidal sensors                            | 17 |
|   | Ignition protection7                                  |   | Communication module connections            |    |
|   | Ground7                                               |   | HART module                                 |    |
|   | Interconnection                                       |   | FOUNDATION Fieldbus module                  | 18 |
|   | Power supply for intrinsically safe applications . 7  |   | Profibus PA module                          | 18 |
|   | Configuration7                                        |   | Ground connection                           | 18 |
|   | Service and repair7                                   |   | Gland entries                               | 18 |
|   | Risk of electrostatic discharge7                      |   |                                             |    |
|   | Hazardous area relevant information 8                 | 7 | Operation                                   |    |
|   | Factory Mutual (FM)8                                  |   | Operator Page – normal conditions           | 19 |
|   | Canadian Standards Authority (CSA)9                   |   | Operator Page – alarm conditions            | 19 |
|   | ATEX/IECEx10                                          |   | Operator menu                               |    |
|   | Specific conditions of use10                          |   | Signals View                                | 20 |
|   |                                                       | 8 | Diagnostic alarms                           | 21 |







| 9  | Password security and Access Level          | 23 |
|----|---------------------------------------------|----|
|    | Access Level                                | 23 |
|    | Write protect switch                        | 23 |
|    | Setting passwords                           | 23 |
|    | Password recovery                           | 23 |
|    | Advanced level password recovery            | 23 |
|    | Service level password recovery             | 23 |
| 10 | Menu overview                               | 24 |
|    | pH menus                                    |    |
|    | 2-electrode conductivity menus              |    |
|    | 4-electrode conductivity menus              |    |
|    | Toroidal conductivity menus                 | 27 |
| 11 | Calibration                                 | 28 |
|    | pH sensor calibration                       | 28 |
|    | Auto Buffer Cal                             |    |
|    | 1-point manual calibration                  |    |
|    | 2-point manual calibration                  | 29 |
|    | 2-electrode conductivity sensor calibration | 30 |
|    | 4-electrode conductivity sensor calibration |    |
|    | Toroidal conductivity sensor calibration    | 3  |
|    | PV Zero calibration                         |    |
|    | PV Span calibration                         | 32 |
| 12 | Specification                               | 33 |
| 13 | Spare parts                                 | 36 |
|    | Communications module assemblies            |    |
|    | Sensor module assemblies                    | 36 |
|    | Main case assemblies                        | 36 |
|    | Gland packs                                 |    |
|    | Glands (packs of 2)                         |    |
|    | Mounting kits                               | 36 |
|    | Panel-mount kit                             | 36 |
|    | Pipe-mount kit                              | 36 |
|    | Wall-mount kit                              | 36 |
|    | Weathershield kit                           | 36 |
|    | Weathershield kit                           | 36 |
|    | Weathershield and pipe-mount kit            | 36 |

# 1 Health & Safety

# **Document symbols**

Symbols that appear in this document are explained below:

# **A DANGER**

The signal word '**DANGER**' indicates an imminent danger. Failure to observe this information will result in death or severe injury.

# **⚠ WARNING**

The signal word '**WARNING**' indicates an imminent danger. Failure to observe this information may result in death or severe injury.

# **A CAUTION**

The signal word 'CAUTION' indicates an imminent danger. Failure to observe this information may result in minor or moderate injury.

# **NOTICE**

The signal word '**NOTICE**' indicates potential material damage.

#### Note

'Note' indicates useful or important information about the product.

# Safety precautions

Be sure to read, understand and follow the instructions contained within this manual before and during use of the equipment. Failure to do so could result in bodily harm or damage to the equipment.

# **↑ WARNING**

### Serious damage to health/risk to life

The AWT210 transmitter is a certified product suitable for use in hazardous area locations. Before using this product refer to the product labeling for details of hazardous area certification. Maintenance and installation and must be carried out only by the manufacturer, authorized agents or persons conversant with the construction standards for hazardous area certified equipment.

# Potential safety hazards

AWT210 transmitter – electrical Damage to the equipment.

# **↑ WARNING**

Bodily injury.

To ensure safe use when operating this equipment, the following points must be observed:

 Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.

Safety advice concerning the use of the equipment described in this manual or any relevant Material Safety Data Sheets (where applicable) can be obtained from the Company, together with servicing and spares information.

# Safety standards

This product has been designed to satisfy the requirements of IEC61010-1:2010 3rd edition 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use' and complies with US NEC 500, NIST and OSHA.

# **Product symbols**

Symbols that may appear on this product are shown below:



Protective earth (ground) terminal.



Functional earth (ground) terminal.



This symbol, when noted on a product, indicates a potential hazard which could cause serious personal injury and/or death. The user should reference this instruction manual for operation and/or safety information.



This symbol, when noted on a product enclosure or barrier, indicates that a risk of electrical shock and/or electrocution exists and indicates that only individuals qualified to work with hazardous voltages should open the enclosure or remove the barrier.



Recycle separately from general waste under the WEEE directive.

# Product recycling and disposal (Europe only)



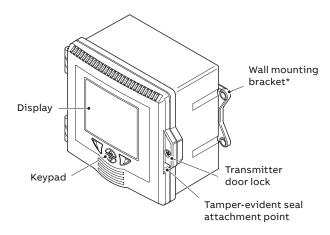
ABB is committed to ensuring that the risk of any environmental damage or pollution caused by any of its products is minimized as far as possible. The European Waste Electrical and Electronic Equipment (WEEE) Directive that initially came into force on August 13 2005 aims to reduce the waste arising from electrical and electronic equipment; and improve the environmental performance of all those involved in the life cycle of electrical and electronic equipment. In conformity with European local and national regulations, electrical equipment marked with the above symbol may not be disposed of in European public disposal systems after 12 August 2005.

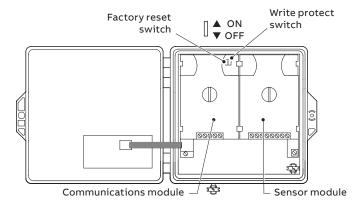
### End-of-life battery disposal

The transmitter contains a small lithium battery (located on the processor/display board) that must be removed and disposed of responsibly in accordance with local environmental regulations.

# Information on ROHS Directive 2011/65/EU (RoHS II)




ABB, Industrial Automation, Measurement & Analytics, UK, fully supports the objectives of the ROHS II directive. All in-scope products placed on the market by IAMA UK on and following the 22nd of July 2017 and without any specific exemption, will be compliant to the ROHS II directive, 2011/65/EU.


# 2 Cyber security

This product is designed to be connected to and to communicate information and data via a digital communication interface. It is your sole responsibility to provide and continuously ensure a secure connection between the product and your network or any other network (as the case may be). You shall establish and maintain any appropriate measures (such as but not limited to the application of authentication measures etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information.

ABB Ltd and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

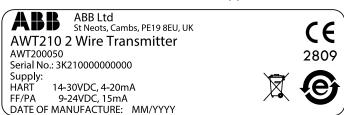
# 3 Overview





\*Panel- and pipe-mount options are also available – see page 13

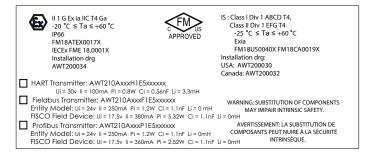
Figure 1 AWT210 transmitter - main components


# **NOTICE**

After commissioning, the factory reset switch must be set to the **OFF** position. This will ensure the device does not lose configuration settings in the event of a power loss.

# Name plate/certification label

The following name plates are examples only. The name plates attached to the transmitter may be different.


### Transmitters without hazardous area approval



# Transmitters with FM/CSA approval and ATEX IECEX Aluminium enclosure



# Transmitters with FM/CSA approval and ATEX IECEx Plastic enclosure



# 4 Hazardous area considerations

Special regulations must be observed in hazardous areas for the auxiliary power connection, signal inputs/outputs and ground connection.

# DANGER

- All parts must be installed in accordance with manufacturer information and relevant standards and regulations.
- Startup and operation must be performed in accordance with ATEX User Directive 99/92/EC or BetrSichV (EN60079-14).

# **Approvals**

### **CE Mark**

The AWT210 transmitter meets all requirements for the CE mark in accordance with applicable EC Directives 2004/108/EC (EMC), 2006/95/EC (LVD) and 94/9/EC (ATEX).

## Ignition protection

The AWT210 transmitter is available with FM, CSA and ATEX/IEC approval. Hazardous area relevant information is included later in this section.

### Ground

If for functional reasons, the intrinsically safe circuit must be grounded by connecting it to an equipotential bonding system, it must be grounded at a single location only.

# Interconnection

Special interconnections, dependent on the safety requirements, are required when the transmitter is used in hazardous areas. Proof of interconnection may be required during the installation if the transmitter is operated in an intrinsically safe circuit.

### Power supply for intrinsically safe applications

The power supply SPS inputs must have corresponding input protection circuits available to eliminate spark hazards. An interconnection inspection must be performed. For proof of intrinsic safety, the electrical limit values must be used as the basis for the prototype test certificates of the transmitters, including the capacitance and inductance values of the wires. Proof of intrinsic safety is granted if the following conditions are fulfilled.

| Output parameter of power supply/SPS input |    | Input parameter of AWT210 transmitter |       |                                             |  |  |  |
|--------------------------------------------|----|---------------------------------------|-------|---------------------------------------------|--|--|--|
| Max. output voltage                        | Uo | ≤                                     | Ui    | Max. input voltage                          |  |  |  |
| Max. output current                        | lo | ≤                                     | li    | Max. input current                          |  |  |  |
| Max. output power                          | Po | ≤                                     | Pi    | Max. input power                            |  |  |  |
| Max. output inductance                     | Lo | ≥                                     | Li+Lc | Internal inductance + inductance of cable   |  |  |  |
| Max. output capacitance                    | Co | ≥                                     | Ci=Cc | Internal capacitance + capacitance of cable |  |  |  |

# Configuration

AWT210 transmitters can be installed in hazardous areas in compliance with proof-of-interconnection and directly in a hazardous area using approved handheld HART/Fieldbus terminals (proof of interconnection may be required during the installation) as well as by coupling an ignition-proof modem to the circuit outside the hazardous area.

# Service and repair

# DANGER

This product has no live maintenance facility. The instrument must be de-energized before any maintenance is performed.

If the instrument is located in a hazardous area, other than the serviceable items listed on page 36, none of the instrument's components can be serviced by the user. Only personnel from ABB, its approved representative(s) or persons conversant with the construction standards for hazardous area certified equipment, is (are) authorized to attempt repairs to the system and only components formally approved by the manufacturer should be used. Any attempt at repairing the instrument in contravention of these principles could cause damage to the instrument and corporal injury to the person carrying out the repair. It renders the warranty null and void and could compromise the hazardous area certification, correct working of the instrument, electrical integrity and the CE compliance of the instrument.

If you have any problems with installation, starting or using the instrument please contact the company that sold it to you. If this is not possible, or if the results of this approach are not satisfactory, please contact the manufacturer's Customer Service.

### Risk of electrostatic discharge

If the instrument is mounted in a hazardous area and the exterior of the instrument requires cleaning, care should be taken to minimize the risk of electrostatic discharge. Use a damp cloth or similar to clean all surfaces.

# ...4 Hazardous area considerations

## Hazardous area relevant information

# **NOTICE**

The hazardous area designation is displayed on the name plate/certification label – see page 6.

# Factory Mutual (FM) Intrinsic safety

Class I, Div 1, Group A,B,C,D T4 Class II/III, Div 1, Group E,F,G T4

# Ingress protection classification 4X\*/IP66

# Ambient temperature range

-25 °C =< Ta =< 60 °C

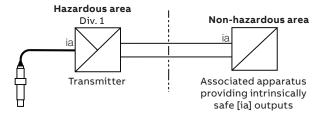



Figure 2 Intrinsic safety - FM

## FM Instrinsic Safety control drawing

<u>Click here</u> to download the FM Instrinsic safety control drawing for AWT210 transmitter, or scan this code:



| Input parameters of AWT210 transmitter: HART |    |   |         |
|----------------------------------------------|----|---|---------|
| Maximum voltage                              | Ui | = | 30 V    |
| Maximum input current                        | li | = | 100 mA  |
| Maximum power                                | Pi | = | 0.8 W   |
| Internal inductance                          | Li | = | 3.3 mH  |
| Internal capacitance                         | Ci | = | 0.56 nF |

| Input parameters of AWT210 transmit | ter: Fieldbus |   | Entity<br>model | FISCO Field<br>Device |
|-------------------------------------|---------------|---|-----------------|-----------------------|
| Maximum voltage                     | Ui            | = | 24 V            | 17.5 V                |
| Maximum input current               | li            | = | 250 mA          | 380 mA                |
| Maximum power                       | Pi            | = | 1.2 W           | 5.32 W                |
| Internal inductance                 | Li            | = | 0 mH            | 0 mH                  |
| Internal capacitance                | Ci            | = | 1.1 nF          | 1.1 nF                |

| Input parameters of AWT210 transmit | ter: Profibus |   | Entity<br>model | FISCO Field<br>Device |
|-------------------------------------|---------------|---|-----------------|-----------------------|
| Maximum voltage                     | Ui            | = | 24 V            | 17.5 V                |
| Maximum input current               | li            | = | 250 mA          | 360 mA                |
| Maximum power                       | Pi            | = | 1.2 W           | 2.52 W                |
| Internal inductance                 | Li            | = | 0 mH            | 0 mH                  |
| Internal capacitance                | Ci            | = | 1.1 nF          | 1.1 nF                |

| Output parameters of sensor: 4-electrode, 2-electrode, toroidal, pH |    |   |         |  |  |
|---------------------------------------------------------------------|----|---|---------|--|--|
| Maximum open-circuit voltage                                        | Uo | = | 11.8 V  |  |  |
| Maximum short-circuit current                                       | lo | = | 11.8 mA |  |  |
| Maximum output power                                                | Ро | = | 36 mW   |  |  |
| Maximum inductance                                                  | Lo | = | 1 H     |  |  |
| Maximum capacitance                                                 | Co | = | 1.5 μF  |  |  |

### Non-incendive

Class I, Div 2, Group A,B,C,D T4 Class II/III, Div 2, Group F,G T4

# Ingress protection classification 4X\*/IP66

### Ambient temperature range

-25 °C =< Ta =< 60 °C

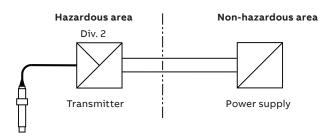



Figure 3 Non-incendive (using non-incendive field wiring) – FM

# FM Non-incendive Safety control drawing

<u>Click here</u> to download the FM **Non-incendive** safety control drawing for AWT210 transmitter, or scan this code:



# **NOTICE**

Parameters apply to entire system inclusive of cables.

Each specified electrical parameter must be applied individually and in combination. Do not exceed the maximum values when applying the electrical parameters individually or in combination.

\*4X Hosedown self-assessed not approved by 3rd party.

# NOTICE

Installation must be in accordance with the National Electrical Code (NFPA 70).

# Canadian Standards Authority (CSA) Intrinsic safety

Class I, Div 1, Group A,B,C,D T4 Class II/III, Div 1, Group E,F,G T4

# Ingress protection classification 4X\*/IP66

### Ambient temperature range

-25 °C =< Ta =< 60 °C

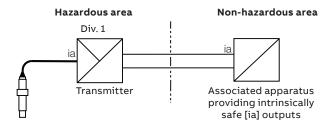



Figure 4 Intrinsic safety - CSA

### CSA Instrinsic Safety control drawing

<u>Click here</u> to download the CSA Instrinsic safety control drawing for AWT210 transmitter, or scan this code:



| Input parameters of AWT210 transmitter: HART |    |   |         |
|----------------------------------------------|----|---|---------|
| Maximum voltage                              | Ui | = | 30 V    |
| Maximum input current                        | li | = | 100 mA  |
| Maximum power                                | Pi | = | 0.8 W   |
| Internal inductance                          | Li | = | 3.3 mH  |
| Internal capacitance                         | Ci | = | 0.56 nF |

| Input parameters of AWT210 transmitter: | Fieldbus |   | Entity<br>model | FISCO Field<br>Device |
|-----------------------------------------|----------|---|-----------------|-----------------------|
| Maximum voltage                         | Ui       | = | 24 V            | 17.5 V                |
| Maximum input current                   | li       | = | 250 mA          | 380 mA                |
| Maximum power                           | Pi       | = | 1.2 W           | 5.32 W                |
| Internal inductance                     | Li       | = | 0 mH            | 0 mH                  |
| Internal capacitance                    | Ci       | = | 1.1 nF          | 1.1 nF                |

| Input parameters of AWT210 transmitter | : Profibus |   | Entity<br>model | FISCO Field<br>Device |
|----------------------------------------|------------|---|-----------------|-----------------------|
| Maximum voltage                        | Ui         | = | 24 V            | 17.5 V                |
| Maximum input current                  | li         | = | 250 mA          | 360 mA                |
| Maximum power                          | Pi         | = | 1.2 W           | 2.52 W                |
| Internal inductance                    | Li         | = | 0 mH            | 0 mH                  |
| Internal capacitance                   | Ci         | = | 1.1 nF          | 1.1 nF                |

| Output parameters of sensor: 4-electrode, 2-electrode, toroidal, pH |    |   |         |  |  |
|---------------------------------------------------------------------|----|---|---------|--|--|
| Maximum open-circuit voltage                                        | Uo | = | 11.8 V  |  |  |
| Maximum short-circuit current                                       | lo | = | 11.8 mA |  |  |
| Maximum output power                                                | Ро | = | 36 mW   |  |  |
| Maximum inductance                                                  | Lo | = | 1 H     |  |  |
| Maximum capacitance                                                 | Co | = | 1.5 μF  |  |  |

### Non-incendive

Class I, Div 2, Group A,B,C,D T4 Class II/III, Div 2, Group F,G T4

# Ingress protection classification 4X\*/IP66

# Ambient temperature range

-25 °C =< Ta =< 60 °C

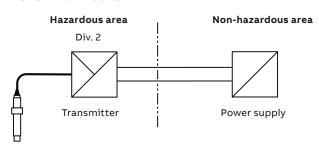



Figure 5 Non-incendive (using non-incendive field wiring) – CSA

## **CSA Non-incendive Safety control drawing**

<u>Click here</u> to download the CSA **Non-incendive** safety control drawing for AWT210 transmitter, or scan this code:



# **NOTICE**

Parameters apply to entire system inclusive of cables.

Each specified electrical parameter must be applied individually and in combination. Do not exceed the maximum values when applying the electrical parameters individually or in combination.

\*4X Hosedown self-assessed not approved by 3rd party.

# NOTICE

Installation must be in accordance with C22.1 Canadian Electrical Code, Part 1.

# ...4 Hazardous area considerations

# ...Hazardous area relevant information

# ATEX/IECEx

## Intrinsic safety

II 1G Ex ia IIC T4 Ga when used with appropriate barriers.

# Ingress protection classification IP66

### Ambient temperature range

-20 °C =< Ta =< 60 °C

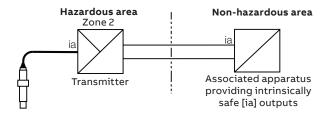



Figure 6 Intrinsic safety - ATEX/IEC

### **ATEX-IECEx Safety control drawing**

<u>Click here</u> to download the ATEX-IECEx safety control drawing for AWT210 transmitter, or scan this code:



| Input parameters of AWT210 transmitter: HART |    |   |         |
|----------------------------------------------|----|---|---------|
| Maximum voltage                              | Ui | = | 30 V    |
| Maximum input current                        | li | = | 100 mA  |
| Maximum power                                | Pi | = | 0.8 W   |
| Internal inductance                          | Li | = | 3.3 mH  |
| Internal capacitance                         | Ci | = | 0.56 nF |

| Input parameters of AWT210 transmitte | er: Fieldbus |   | Entity<br>model | FISCO Field<br>Device |
|---------------------------------------|--------------|---|-----------------|-----------------------|
| Maximum voltage                       | Ui           | = | 24 V            | 17.5 V                |
| Maximum input current                 | li           | = | 250 mA          | 380 mA                |
| Maximum power                         | Pi           | = | 1.2 W           | 5.32 W                |
| Internal inductance                   | Li           | = | 0 mH            | 0 mH                  |
| Internal capacitance                  | Ci           | = | 1.1 nF          | 1.1 nF                |

| Maximum input current | r: Profibus |   | Entity<br>model | FISCO Field<br>Device |
|-----------------------|-------------|---|-----------------|-----------------------|
| Maximum voltage       | Ui          | = | 24 V            | 17.5 V                |
| Maximum input current | li          | = | 250 mA          | 360 mA                |
| Maximum power         | Pi          | = | 1.2 W           | 2.52 W                |
| Internal inductance   | Li          | = | 0 mH            | 0 mH                  |
| Internal capacitance  | Ci          | = | 1.1 nF          | 1.1 nF                |

| Output parameters of sensor: 4-electrode, 2-electrode, toroidal, pH |    |   |         |  |  |  |  |  |
|---------------------------------------------------------------------|----|---|---------|--|--|--|--|--|
| Maximum open-circuit voltage                                        | Uo | = | 11.8 V  |  |  |  |  |  |
| Maximum short-circuit current                                       | lo | = | 11.8 mA |  |  |  |  |  |
| Maximum output power                                                | Po | = | 36 mW   |  |  |  |  |  |
| Maximum inductance                                                  | Lo | = | 1 H     |  |  |  |  |  |
| Maximum capacitance                                                 | Co | = | 1.5 μF  |  |  |  |  |  |

# **NOTICE**

Parameters apply to entire system inclusive of cables.

Each specified electrical parameter must be applied individually and in combination. Do not exceed the maximum values when applying the electrical parameters individually or in combination.

# **NOTICE**

Installation must be in accordance with IEC 60079-14 and the wiring practices for the country of installation.

# Specific conditions of use

1 For the aluminium enclosure for EPL Ga – the AWT210 enclosure option (code position 8, option 2 – see Data Sheet <u>DS/AWT210-EN</u>) contains aluminium and is considered to present a potential risk of ignition by impact or friction. Care shall be taken into account during installation and use to prevent impact or friction.

### 2 For the aluminium enclosure -

for areas subject to explosive dust atmospheres the painted surface of the AWT210 may store electrostatic charge and become a source of ignition in applications with a low relative humidity <~30% relative humidity where the painted surface is relatively free of surface contamination such as dirt, dust, or oil. Guidance on protection against the risk of ignition due to electrostatic discharge can be found in IEC TS 60079-32-1. Cleaning of the painted surface shall only be done in accordance with the manufacturer's instructions (see page 7).

## 3 For the Lexan enclosure -

for areas subject to explosive gas atmospheres the Lexan enclosure AWT210 may store electrostatic charge and become a source of ignition in applications with a low relative humidity <~30% relative humidity where the Lexan is relatively free of surface contamination such as dirt, dust, or oil. Guidance on protection against the risk of ignition due to electrostatic discharge can be found in IEC TS 60079-32-1. Cleaning of the surface shall only be done in accordance with the manufacturer's instructions (see page 7).

# 4 For aluminium and Lexan enclosures –

the AWT210 shall not be used where UV light or radiation may impinge on the enclosure or the window of the enclosure.

5 For Non – Incendive applications the sensor can be used **only** in non-flammable materials.

# 5 Mechanical installation

### Sensor installation

Refer to the sensor's Operating Instruction for installation procedures.

### Transmitter installation

# Transmitter dimensions Dimensions in mm (in)

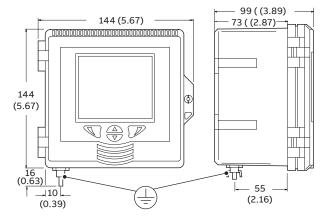



Figure 7 Transmitter dimensions

### Fitting communication modules

Referring to Figure 8:

- 1 Ensure the locking spindle on both modules is in the UNLOCKED position.
- 2 Fit communication module A to baseboard B (the left, COMMUNICATION MODULE position).
- 3 Turn the locking spindle ¼ turn to the LOCKED position.
- **4** Fit sensor module © to baseboard D (the right, SENSOR MODULE position).
- 5 Turn the locking spindle ¼ turn to the LOCKED position.

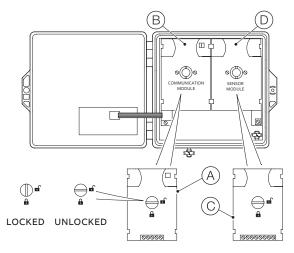



Figure 8 Fitting communication modules

#### Location

For general location requirements refer to Figure 9. Select a location away from strong electrical and magnetic fields. If this is not possible, particularly in applications where mobile communications equipment is expected to be used, screened cables within flexible, earthed metal conduit must be used.

Install in a clean, dry, well ventilated and vibration-free location providing easy access. Avoid rooms containing corrosive gases or vapors – for example, chlorination equipment or chlorine gas cylinders.

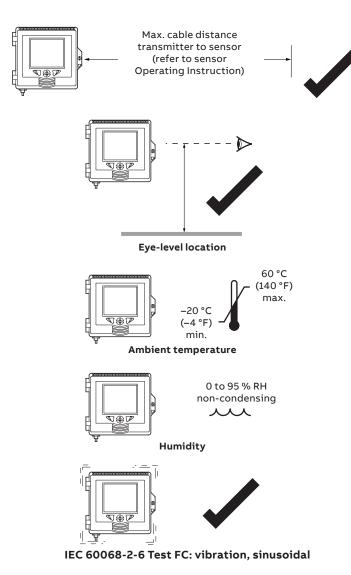



Figure 9 Transmitter location

### Optional accessories (see page 36)

- Cable gland kits
- Panel-mount kit
- Pipe-mount kit

# ...5 Mechanical installation

# ...Transmitter installation

# Wall mounting

Referring to Figure 10:

- 1 Position the left- and right-hand mounting brackets (A) into the recesses on the rear of the transmitter as shown and secure with the bracket securing screws. Ensure the plastic washers remain in the positions fitted.
- 2 Mark fixing centers (B) and drill suitable holes in the wall.
- 3 Secure the transmitter to the wall using 2 screws © (not supplied) in each mounting bracket.

# **NOTICE**

If the optional weathershield  $\bigcirc$  is used, position it between the transmitter and wall and pass 2 screws  $\bigcirc$  through fixing holes (both sides) in weathershield.

### Dimensions in mm (in)

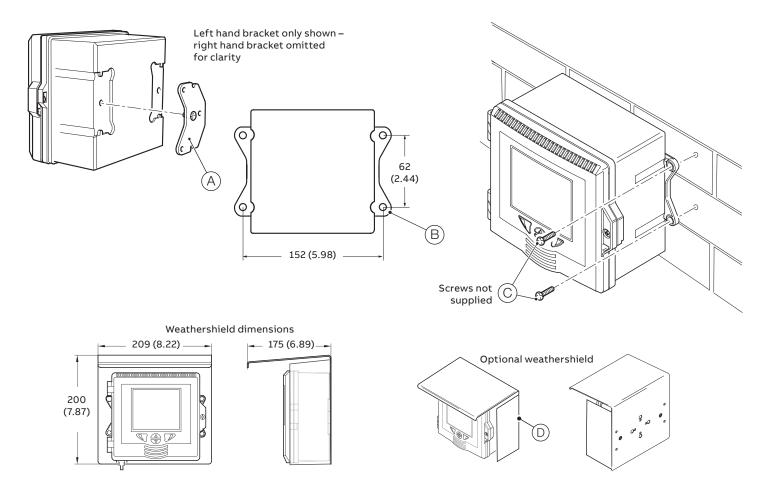



Figure 10 Wall mounting the transmitter

# Panel mounting (optional)

Referring to Figure 11:

- 1 Cut the correct sized hole in panel (A).
- 2 Insert the transmitter into the panel cut-out (B).
- 3 Screw one panel clamp anchor screw © into the left-hand bracket D until 10 to 15 mm (0.39 to 0.59 in) of the thread protrudes from the other side of the bracket and position one clamp (E) over the end of the thread.

# **NOTICE**

The correct torque is critical to ensure proper compression of the panel seal and achieve the IP66/NEMA 4X hosedown rating – see step **6**.

- 4 Holding assembly (F) together, position bracket (D) into the left-hand recess on the rear of the transmitter and secure with bracket securing screw (G). Ensure that the plastic washer remains in the position fitted.
- **5** Repeat steps **3** and **4** for the right-hand panel clamp assembly.
- 6 Torque each panel clamp anchor screw to 0.5 to 0.6 Nm (4.42 to 5.31 lbf·in).

### Dimensions in mm (in)

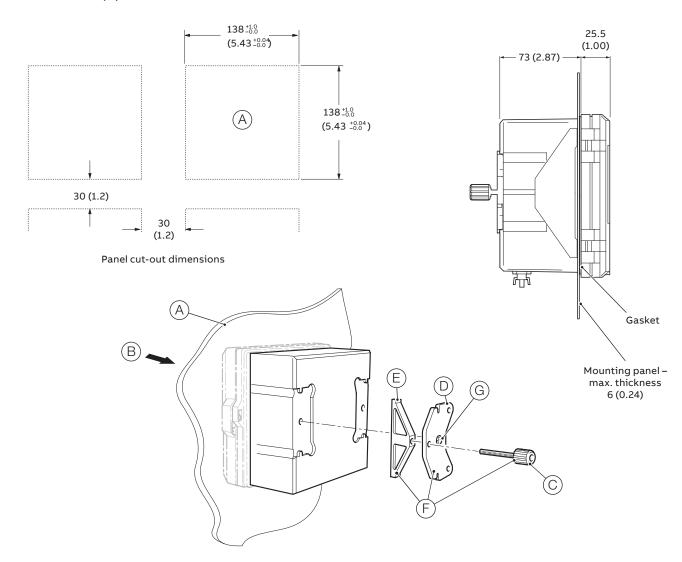



Figure 11 Panel mounting the transmitter

# ... 5 Mechanical installation

# ...Transmitter installation

# Pipe mounting (optional)

Referring to Figure 12, secure the transmitter to a pipe as follows:

- 1 Fit two M6 x 50 mm hexagon-head screws (A) through one clamp plate as shown.
- 2 Using the appropriate holes to suit vertical or horizontal pipe, secure the clamp plate to the pipe-mounting bracket 

  B using two M6 x 8 mm hexagon-head screws and spring lock washers ©.
- 3 Position the pipe mounting bracket into the recesses on the rear of the transmitter as shown and secure with the two bracket securing screws ①. Ensure the plastic washers remain in the positions fitted.
- **4** Secure the transmitter to the pipe using the remaining clamp plate, spring lock washers and nuts (E).

# **NOTICE**

If the optional weathershield  $\widehat{\mathbb{F}}$  is used, locate it against the transmitter back panel and attach the pipe-mount kit to the weathershield rear face and transmitter.

### Dimensions in mm (in)

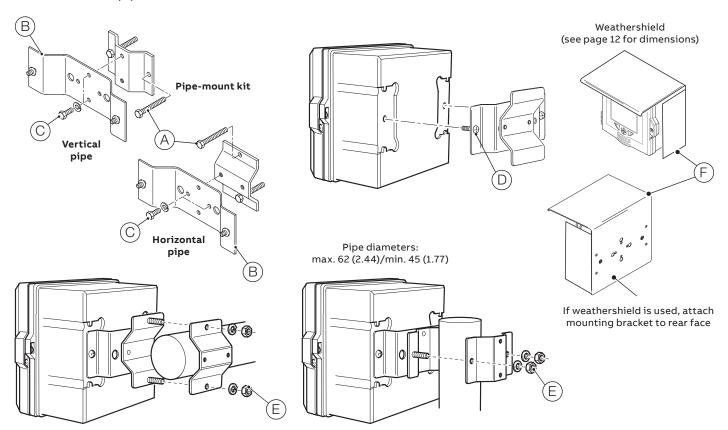



Figure 12 Pipe mounting the transmitter

# 6 Electrical installation

# DANGER

- If the transmitter is used in a manner not specified by the Company, the protection provided by the equipment may be impaired.
- Refer to page 7 for electrical installation considerations in Hazardous areas.
- The transmitter conforms to Installation Category II of IEC 61010.
- All equipment connected to the transmitter's terminals must comply with local safety standards (IEC 60950, EN61010-1).

# ▲ DANGER – CONNECTION/CABLE REQUIREMENTS

- The connection terminals accept cables with peripheral wire cross-section of:
  - min.: 0.14 mm<sup>2</sup> (26 AWG)
  - max.: 1.5 mm<sup>2</sup> (14 AWG)
- Do not use a rigid conductor material as this can result in wire breaks.
- Ensure the connecting cable is flexible.
- To ensure the sensor cable length is sufficient, allow an additional 100 mm (4 in) of cable to pass through cable glands into the housing.
- Ensure the correct connections are made to suit the transmitter variant.

# **Terminal connections**

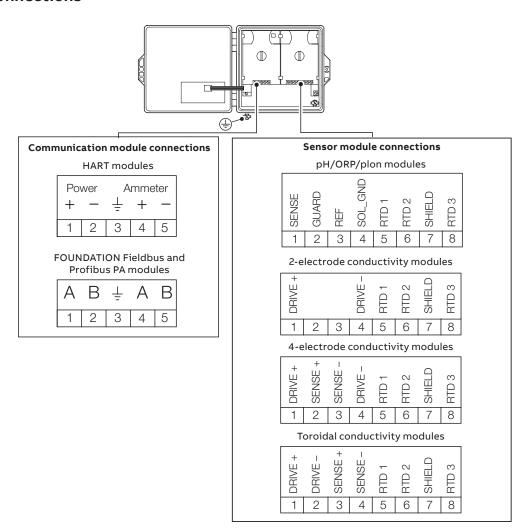



Figure 13 Connections overview

# ...6 Electrical installation

# pH/ORP/pION sensor module connections

# **NOTICE**

ORP (Redox) and Antimony pH sensors do not feature temperature compensation therefore do not have temperature sensors or related wiring.

Standard sensors without diagnostic functions

# **NOTICE**

Ensure sensor diagnostics are **Off** when using standard sensors without diagnostic functions.

| _           |            |       |        |       |       |       |         |        |       |
|-------------|------------|-------|--------|-------|-------|-------|---------|--------|-------|
|             | _          | SENSE | GUARD  | REF   | S.GND | RTD 1 | RTD 2   | SHIELD | RTD 3 |
| Sensor type | RTD wiring | 1     | 2      | 3     | 4     | 5     | 6       |        | 8     |
| 2867        | 2-lead     | Clear | _      | Black | _     | Red   | White   | _      | _     |
| TB5         | 2-lead     | Blue  | _      | Black | -     | Red   | White   | _      | _     |
|             | 2-lead     | Clear | _      | Black | _     | Red   | White   | _      | _     |
| AP1xx       | z-ieau     | Cicai |        | Diack |       | Red   | Willied |        |       |
|             | 3-lead     | Clear | _      | Black | -     | White | Red     | _      | Red   |
| A D2        | 2-lead*    | Blue  | -      | Black | _     | Red   | White   | _      | _     |
| AP3xx       | 3-lead     | Blue  | -      | Black | _     | Red   | White   | _      | Grey  |
| APS1xx      | 2-lead*    | Blue  | Yellow | Black | _     | Red   | White   | _      | _     |
| APS5xx      |            |       |        |       |       |       |         |        |       |
| APS7xx      | 3-lead     | Blue  | Yellow | Black | -     | Red   | White   | _      | Grey  |

<sup>\*</sup> Cut and remove grey wire

Standard sensors with diagnostic functions

# **NOTICE**

Ensure sensor diagnostics are **On** when using standard sensors with diagnostic functions.

| Sensor type | RTD wiring | SENSE<br>1 | GUARD<br>2 | REF<br>3 | S.GND<br>4   | RTD 1<br>5 | RTD 2 | SHIELD<br>7 | RTD 3<br>8 |
|-------------|------------|------------|------------|----------|--------------|------------|-------|-------------|------------|
| TBX5        | 2-lead     | Blue       | Yellow     | Black    | Green        | Red        | White | Dark green  |            |
| AP2xx       | 2-lead*    | Clear      | Red        | Blue     | Green/Yellow | Red        | White | -           | _          |
| AFLXX       | 3-lead     | Clear      | Red        | Blue     | Green/Yellow | Red        | White | -           | Grey       |

<sup>\*</sup> Cut and remove grey wire

# NOTICE

AWT210 pH sensor modules are supplied standardized to theoretical sensor characteristics. Following installation, but before use, a process calibration should be performed to ensure optimum accuracy. For pH sensor calibration procedures see Operating Instruction OI/AWT210-EN.

# **NOTICE**

### **BNC** adaptor option

For pH/ORP/pION sensors using a BNC connector, ABB recommends using the optional BNC adapter.

ABB does not recommend stripping or cutting sensor cabling due to the nature of the signal and cabling used.

# Conductivity sensor module connections

### 2-electrode sensors

|                          |            | DRIVE + |   |   | DRIVE - | RTD 1                 | RTD 2            | SHIELD     | RTD 3 |
|--------------------------|------------|---------|---|---|---------|-----------------------|------------------|------------|-------|
| Sensor type              | RTD wiring | 1       | 2 | 3 | 4       | 5                     | 6                | 7          | 8     |
| 2025, 2045               | 2-lead     | Red     | - | - | Black   | Green/<br>Yellow Blue | Brown            | -          | -     |
| 2077, 2078<br>2085, 2089 | 3-lead     | Red     | - | _ | Black   | Brown                 | Green/<br>Yellow | _          | Blue  |
| TB2                      | 2-lead     | Green   | - | - | Black   | Blue                  | Yellow           | Dark green | _     |
| A.G.2                    | 2-lead     | Green   | - | _ | Black   | Blue/Red              | Yellow           | Dark green | _     |
| AC2xx                    | 3-lead     | Green   | - | _ | Black   | Yellow                | Red              | Dark green | Blue  |

# NOTICE

AWT210 2-electrode conductivity sensor modules are supplied standardized to theoretical sensor characteristics. Following installation, but before use, a process calibration should be performed to ensure optimum accuracy. For 2-electrode conductivity sensor calibration procedures see Operating Instruction OI/AWT210-EN.

### 4-electrode sensors

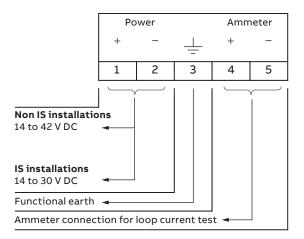
|             |            | DRIVE + | SENSE + | SENSE - | DRIVE - | RTD 1 | RTD 2  | SHIELD     | RTD 3 |
|-------------|------------|---------|---------|---------|---------|-------|--------|------------|-------|
| Sensor type | RTD wiring | 1       | 2       | 3       | 4       | 5     | 6      | 7          | 8     |
| TB4         | 2-lead     | Green   | Red     | White   | Black   | Blue  | Yellow | Dark green |       |

# **NOTICE**

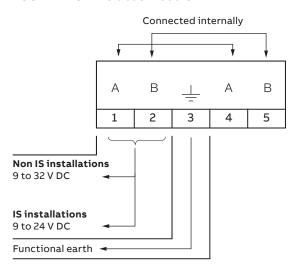
AWT210 4-electrode conductivity sensor modules are supplied standardized to theoretical sensor characteristics. Following installation, but before use, a process calibration should be performed to ensure optimum accuracy. For 4-electrode conductivity sensor calibration procedures see Operating Instruction OI/AWT210-EN.

# Toroidal sensors

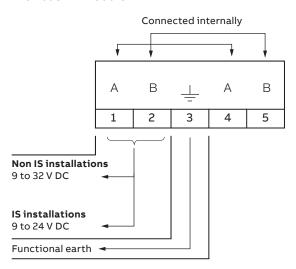
|             |            | DRIVE + | DRIVE - | SENSE + | SENSE - | RTD 1 | RTD 2  | SHIELD     | RTD 3 |
|-------------|------------|---------|---------|---------|---------|-------|--------|------------|-------|
| Sensor type | RTD wiring | 1       | 2       | 3       | 4       | 5     | 6      | 7          | 8     |
| TB4         | 2-lead     | Black   | Blue    | White   | Red     | Green | Yellow | Dark green | _     |


# **NOTICE**

AWT210 toroidal conductivity sensor modules are supplied standardized to theoretical sensor characteristics. Following installation, but before use, a process calibration should be performed to ensure optimum accuracy. For toroidal conductivity sensor calibration procedures see Operating Instruction OI/AWT210-EN.


# ...6 Electrical installation

# Communication module connections


#### **HART** module



#### **FOUNDATION Fieldbus module**



### Profibus PA module



### **Ground connection**

Normal grounding practice is to terminate all grounds at the control room side, in which case the field side of the screen should be adequately protected to avoid contact with metallic objects. The transmitter case should be grounded.

# **MARNING**

### **Bodily injury**

If conduit hubs are used, they will not provide a bonding of the enclosure or system.

Referring to Figure 14, ground connections are provided: internally (A) and externally (B).

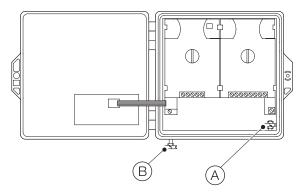



Figure 14 AWT210 ground connections

For IS systems the grounding should be at the safety barrier earth connection. For bus-powered systems the grounding of the screen should be close to the power supply unit. The specific noise immunity and emitted interference are only guaranteed when bus screening is fully effective – for example, ensuring that screening is maintained through any existing junction boxes. Appropriate equipotential bonding must be provided to avoid differences in potential among the individual plant components.

To ensure fault-free communication on Fieldbus (FF or PA) installations, the bus must be properly terminated at both ends. Only approved bus terminators must be used for intrinsically safe circuits.

## NOTICE

HART, Profibus and Fieldbus protocols are not secure. Therefore, the intended application should be assessed before implementation to ensure these protocols are suitable.

# Gland entries

For hazardous area installations, suitable Ex glands and blanking elements must be used to seal the entry holes.

# 7 Operation

# **Operator Page – normal conditions**

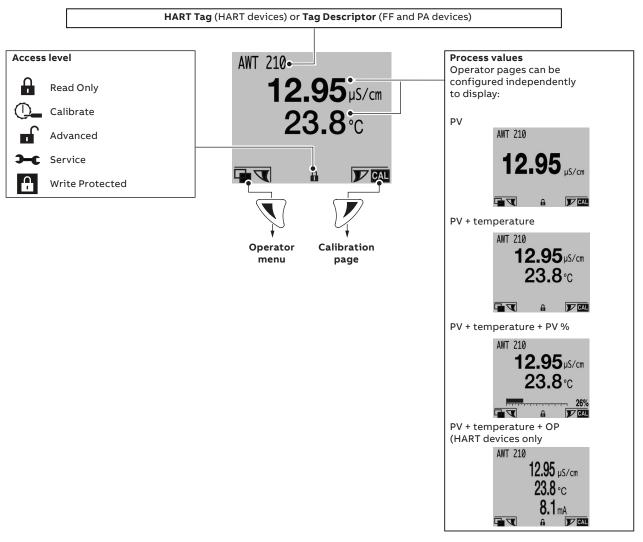



Figure 15 Example Operator pages - normal conditions

# Operator Page - alarm conditions

If any of the diagnostic alarms are active the NAMUR status of the device is indicated by displaying the class and category of the highest priority active alarm.

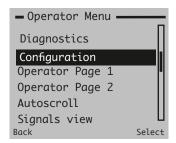
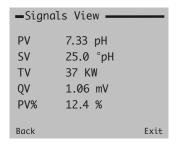



Figure 16 Example Operator pages – alarm conditions

# ...7 Operation

# Operator menu


From the Operator menu, use the  $\triangle/\nabla$  keys to highlight the required menu and press the  $\nearrow$  key to select:



Operator menus comprise:

- Diagnostics: displays a list of active diagnostic alarm messages in priority order see page 21.
- Configuration: enters the Configuration level menus.
- Operator Page 1: displays the first Operator Page.
- Operator Page 2: displays the second Operator Page (available only if Operator Page 2 enabled).
- Autoscroll: switches automatically between the two Operator pages (available only if Operator Page 2 enabled).
- Signals View: displays a list of active signals.

# **Signals View**



| Signal | Sensor type<br>pH                                | Sensor type<br>2-electrode conductivity          | Sensor type<br>4-electrode conductivity          | Sensor type<br>toroidal conductivity             |
|--------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| PV     | pH, ORP, Ion Conc or pION                        | Conductivity or Concentration                    | Conductivity or Concentration                    | Conductivity or Concentration                    |
| SV     | Temperature                                      | Temperature                                      | Temperature                                      | Temperature                                      |
| TV     | Reference impedance                              | Conductivity without temperature compensation    | Conductivity without temperature compensation    | Conductivity without temperature compensation    |
| QV     | pH, Cell output (mV)                             | Conductivity                                     | Conductivity                                     | Conductivity                                     |
| PV%    | Primary variable percentage of engineering range |
| O/P    | Current output<br>(HART versions only)           |

Table 1 Signals View/Sensor type values displayed

# 8 Diagnostic alarms

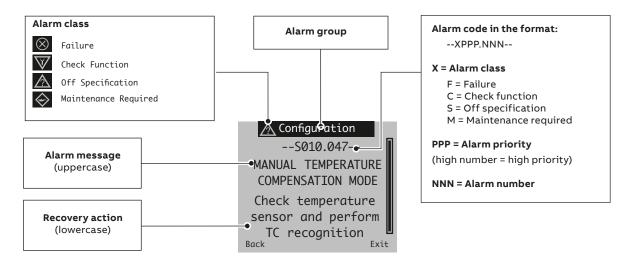



Figure 17 Example diagnostic alarm

**Note.**Alarms are listed in alarm priority order (high number = high priority alarm).

| Diagnostic message           | ALARM MESSAGE                            | Recovery action                                             | рН       | 2-electrode conductivity | 4-electrode conductivity | Toroidal<br>conductivity | HART | FF | PA |
|------------------------------|------------------------------------------|-------------------------------------------------------------|----------|--------------------------|--------------------------|--------------------------|------|----|----|
|                              | SENSOR MODULE<br>MEMORY FAILURE          | Change sensor module                                        | ✓        | ✓                        | ✓                        | ✓                        | ✓    | ✓  | 1  |
|                              | COMMS MODULE<br>MEMORY FAILURE           | Change comms module                                         | ✓        | ✓                        | ✓                        | ✓                        | ✓    | ✓  | 1  |
| Electronics                  | CURRENT OUTPUT<br>NOT CALIBRATED         | Trim output If problem persists change comms module         | 1        | <b>√</b>                 | ✓                        | ✓                        | ✓    |    |    |
| Configuration                | DATA<br>SIMULATION                       |                                                             | 1        | ✓                        | <b>✓</b>                 | <b>√</b>                 | ✓    | ✓  | ✓  |
| ▼ ConfigurationC097.030      | CURRENT OUTPUT<br>FIXED                  | Enable loop current mode. Disable loop test/trim & PV cal.  | <b>√</b> | <b>√</b>                 | 1                        | ✓                        | ✓    |    |    |
| ProcessC096.031              | CURRENT OUTPUT<br>SATURATED              | Adjust engineering range                                    | 1        | ✓                        | ✓                        | ✓                        | ✓    |    |    |
|                              | SENSOR MODULE<br>FAILURE                 | Change sensor module                                        | <b>√</b> | ✓                        | <b>✓</b>                 | <b>√</b>                 | ✓    | ✓  | 1  |
| ♦ ProcessF087.040            | OPEN CABLE OR SENSOR<br>OUT OF SOLUTION  | Check sensor wiring<br>Verify that sensor<br>is in solution | <b>√</b> |                          |                          |                          | ✓    | ✓  | 1  |
|                              | PRIMARY VARIABLE<br>INPUT READ ERROR     | Check sensor If problem persists change sensor module       | <b>√</b> | 1                        | 1                        | ✓                        | ✓    | ✓  | 1  |
|                              | 2ND PRIMARY VARIABLE<br>INPUT READ ERROR | Check sensor If problem persists change sensor module       |          | <b>√</b>                 |                          |                          | ✓    | ✓  | 1  |
| <pre>OperationM084.038</pre> | SHORTED CABLE OR<br>GROUND LOOPS PRESENT | Check sensor wiring                                         | <b>√</b> |                          | 1                        |                          | 1    | ✓  | ✓  |
| Sensor M083.007              | SENSOR<br>POLARIZATION                   | Check process<br>Check sensor wiring<br>Clean sensor        | 1        |                          |                          |                          | ✓    | ✓  | 1  |

Table 2 Diagnostic alarms

# ...8 Diagnostic alarms

| Diagnostic message               | ALARM MESSAGE                             | Recovery action                                                    | рН       |          | 4-electrode conductivity | Toroidal<br>conductivity | HART     | FF       | PA |
|----------------------------------|-------------------------------------------|--------------------------------------------------------------------|----------|----------|--------------------------|--------------------------|----------|----------|----|
| ♦ ProcessM082.005                | SENSOR IS DIRTY                           | Clean sensor                                                       |          |          | ✓                        |                          | ✓        | 1        | ✓  |
| Electronics                      | DIAGNOSTIC<br>INPUT READ ERROR            | Check terminals<br>Check sensor wiring<br>Check electrode          |          |          | ✓                        |                          | ✓        | 1        | ✓  |
| Electronics                      | LOW ELECTRODE<br>IMPEDANCE                | Check terminals<br>Check sensor wiring<br>Check electrode          | ✓        |          |                          |                          | ✓        | ✓        | ✓  |
| <u>↑</u> Process                 | PRIMARY VARIABLE<br>OUTSIDE PHYS. LIMITS  | Check sensor wiring<br>Check configuration                         | ✓        | ✓        | ✓                        | ✓                        | ✓        | ✓        | ✓  |
| •-S076.010                       | PRIMARY VARIABLE<br>OUTSIDERANGE LIMITS   | Adjust engineering range                                           | ✓        | ✓        | ✓                        | ✓                        | ✓        | ✓        | 1  |
| <pre>♠ ElectronicsS074.001</pre> | TEMPERATURE<br>INPUT READ ERROR           | Check sensor If problem persists change sensor module              | ✓        | <b>✓</b> | ✓                        | ✓                        | 1        | 1        | 1  |
| ProcessS072.011                  | SENSOR TEMPERATURE<br>OUTSIDE LIMITS      | Check sensor wiring<br>Check temperature<br>configuration          | ✓        | ✓        | ✓                        | ✓                        | ✓        | 1        | 1  |
| ∴ Sensor     ∴ S068.043          | HIGH SENSOR<br>EFFICIENCY (slope)         | Check calibration<br>Clean sensor<br>Check sensor wiring           | ✓        |          |                          |                          | <b>√</b> | 1        | 1  |
| ∴ Sensor     ∴ F066.044          | LOW SENSOR<br>EFFICIENCY (slope)          | Check calibration<br>Clean sensor<br>Check sensor wiring           | ✓        |          |                          |                          | <b>√</b> | 1        | 1  |
| ∴ Sensor    S064.045             | HIGH SENSOR<br>OFFSET                     | Check calibration<br>Clean sensor<br>Check sensor wiring           | ✓        |          |                          |                          | <b>√</b> | 1        | 1  |
| ∴ Sensor     ∴ So62.046          | LOW SENSOR<br>OFFSET                      | Check calibration Clean sensor Check sensor wiring                 | ✓        |          |                          |                          | ✓        | 1        | 1  |
| ← ElectronicsM060.037            | DIAGNOSTIC<br>INPUT READ ERROR            | Check sensor wiring If problem persists change sensor module       | ✓        |          |                          |                          | ✓        | 1        | ✓  |
| ← Electronics     ← M056.002     | REFERENCE IMPEDANCE<br>INPUT READ ERROR   | Check sensor If problem persists change sensor module              | <b>√</b> |          |                          |                          | <b>√</b> | <b>√</b> | 1  |
| SensorM054.012                   | HIGH REFERENCE<br>IMPEDANCE               | Check sensor<br>Check sensor wiring                                | ✓        |          |                          |                          | <b>√</b> | ✓        | 1  |
| <pre>OperationM024.033</pre>     | POWER SUPPLY<br>VOLTAGE<br>OUTSIDE LIMITS | Trim output Ensure power supply voltage is within limits           | <b>√</b> | <b>√</b> | 1                        | ✓                        | ✓        |          |    |
| Electronics                      | SENSOR MODULE<br>VOLTAGE WARNING          | Check sensor wiring<br>If problem persists<br>change sensor module | ✓        | <b>✓</b> | ✓                        | ✓                        | 1        | <b>√</b> | ✓  |
| ↑ ConfigurationS010.047          | MANUAL TEMPERATURE COMPENSATION MODE      | Check temperature<br>sensor and perform<br>TC recognition          | ✓        | ✓        | ✓                        | ✓                        | ✓        | 1        | 1  |

...Table 2 Diagnostic alarms

# 9 Password security and Access Level

Passwords are entered at the Enter Password screen accessed via the Access Level – see below.

### Access Level

The Access Level is entered via the Operator/Enter Configuration menu option. Use the  $\bigcirc$ / $\bigcirc$  keys to highlight the required level and press  $\bigcirc$  to enter the level.





Figure 18 Access level screen

| Level     | Access                                                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logout    | Displayed only after Calibrate or Advanced levels are accessed Logs the user out of the current level. If passwords are set, a password must be entered to access these levels again after selecting Logout. |
| Read Only | View all parameters in read-only mode.                                                                                                                                                                       |
| Calibrate | Enables access and adjustment of Calibrate level only (calibration menus are sensor-specific).                                                                                                               |
| Advanced  | Enables configuration access to all parameters.                                                                                                                                                              |
| Service   | Reserved for authorized service technicians only.                                                                                                                                                            |

Table 3 Access level menu details

Cursor/Password character indicator (maximum 6 characters)



Cursor – scroll characters using the ♥/♠ keys; press ♥ (Next) to accept character; press ♥ (OK) to accept password while last character is highlighted

Figure 19 Enter password screen

# Write protect switch

When the Write Protect switch (see page 6) is in the ON position, the transmitter is write-protected (and the Write Protected icon for is displayed – see page 19). This means that only the Read Only access level is available to the operator.

When this switch is in the OFF position, all access levels are available (Read Only, Calibrate, Advanced and Service).

# Setting passwords

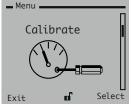
Passwords can be set to enable secure access at 2 levels:
Calibrate and Advanced. The Service Level is password
protected at the factory and reserved for factory use only.
Passwords can contain up to 6 characters and are set, changed
or restored to their default settings at the Device Setup/
Security Setup parameter – see Operating Instruction
OI/AWT210-EN.

**Note**. The transmitter is supplied with blank passwords for the Calibrate and Advanced levels, therefore, the Calibrate and Advanced levels levels can be accessed without password protection. It is recommended to set passwords for these access levels.

# **Password recovery**

# Advanced level password recovery

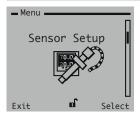
To recover the Advanced level password, move the Write Protect switch to the OFF position (see page 6). Select the Service Access level and enter the Service level password to gain access. From the Service level, the Device Setup menu can be accessed to reset the Advanced level password.


## Service level password recovery

If the Service level password is lost, the only way to recover it is by following the procedure to reset all parameters to the factory default values as described in Operating Instruction <a href="Ol/AWT210-EN">Ol/AWT210-EN</a>. This resets all parameters including passwords.

# 10 Menu overview

## pH menus


#### Level Language - Menu -Measurement Type • pH Sensor Type Easy Setup - Isopotential Point - Asymmetric Potential • PV Unit • Valence • Magnitude Fxit • End Magnitude • End mV Temperature Units Temp. Comp. Type • Manual Temperature • Solution Coefficient Operator page 1 Automatic Buffer Cal. ■ Menu ■



Automatic Buffer Cal. PV Manual Cal Temperature Cal Hold Output (HART only)

- Auto Buffer Setup
  - Temperature Compensation Coefficient
  - Buffer Type
  - Buffer 1 Value
  - Buffer 2 Value
  - User Defined Buffer 1
  - User Defined Buffer 2

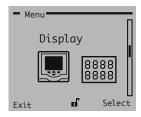
Calibration Limits Edit Calibration Restore Defaults



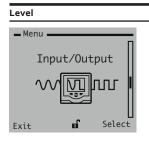
Measurement Type

- pH Sensor Type
  - Isopotential PointAsymmetric Potential
- PV Unit
- Valence
- Magnitude
- End Magnitude
- End mV

Temperature Units


Temperature Compensation Type

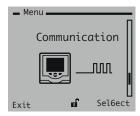
- Manual Temperature
- Solution Coefficient


Temperature Sensor Type Detect Temperature Sensor



Security Setup PDM Compatibility (HART only) Reset to defaults




Operator Page 1 Operator Page 2 Contrast Language



Engineering Range Low
Engineering Range High
Damping
Fault Current (HART only)
Output Type (HART only)
Function Gen Table (HART only)
Trim 4mA (HART only)
Trim 20mA (HART only)
Loop Test (HART only)



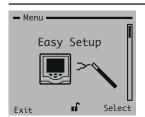
Sensor Diagnostics Reference Impedance Limit Diagnostic Status



#### HART version:

Device Address
HART Tag
HART Description
Message
Manuf. ID
Last Command
HART Revision
Resp. Preamble
Loop Current Mode

#### PA version:


Slave Address Device Tag Ident No. Selector Manuf. ID Device Type PA Profile

## Foundation Fieldbus version

Node Address Device Tag Manuf. ID Device Type Device Revision Simulation



# 2-electrode conductivity menus

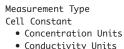


Level

# 2-electrode conductivity

Language Measurement Type Cell Constant

Operator page 1


- Concentration Units
- Concentration Curve Name Temperature Units



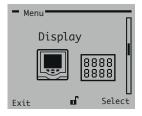
Sensor Setup

- Menu -

Conductivity Calibration Concentration Calibration Temperature Calibration Hold Output (HART only) Edit Calibration Restore Defaults

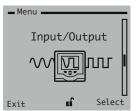


- Conductivity Units
- Concentration Curve Name
- Concentration Curve Table Temperature Units


Temperature Compensation Type

- Manual Temperature
- Auto Temperature Compensation Option 0
  - Temperature Compensation Coefficient
  - Pure H20 Type
  - User Defined Temperature Compensation Curve

Reference Temperature Temperature Sensor Type Detect Temperature Sensor




Security Setup PDM Compatibility (HART only) Reset to defaults



Operator Page 1 Operator Page 2 Contrast Language

#### Level 2-electrode conductivity



Engineering Range Low Engineering Range High Damping Fault Current (HART only) Output Type (HART only) Function Gen Table (HART only) Trim 4mA (HART only) Trim 20mA (HART only) Loop Test (HART only)



Sensor Diagnostics Diagnostic Status



#### **HART** version:

Device Address HART Tag HART Description Message Manuf. ID Last Command HART Revision Resp. Preamble Loop Current Mode

#### PA version:

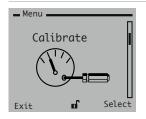
Slave Address Device Tag Ident No. Selector Manuf. ID Device Type PA Profile

## Foundation Fieldbus version

Node Address Device Tag Manuf. ID Device Type Device Revision Simulation



# ...10 Menu overview


# 4-electrode conductivity menus

# Level 4-electrode conductivity



Language Measurement Type Sensor Group

- Concentration Units
- Concentration Curve Name Temperature Units Operator page 1



Sensor Setup

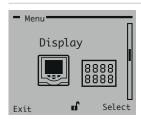
- Menu -

Conductivity Calibration Concentration Calibration Temperature Calibration Hold Output (HART only) Edit Calibration Restore Defaults



- Concentration Units
- Conductivity Units
- Concentration Curve Name

- Concentration Curve Table Temperature Units


Temperature Compensation Type

- Manual Temperature
- Auto Temperature Compensation Option 0
  - Temperature Compensation Coefficient
  - User Defined Temperature Compensation Curve

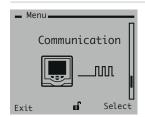
Reference Temperature Temperature Sensor Type Detect Temperature Sensor



Security Setup PDM Compatibility (HART only) Reset to defaults



Operator Page 1 Operator Page 2 Contrast Language


# Level ■ Menu ■ Input/Output Select Exit

# 4-electrode conductivity

Engineering Range Low Engineering Range High Damping Fault Current (HART only) Output Type (HART only) Function Gen Table (HART only) Trim 4mA (HART only) Trim 20mA (HART only) Loop Test (HART only)



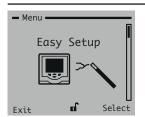
Sensor Diagnostics Diagnostic Status



#### **HART version:**

Device Address HART Tag HART Description Message Manuf. ID Last Command HART Revision Resp. Preamble Loop Current Mode

#### PA version:


Slave Address Device Tag Ident No. Selector Manuf. ID Device Type PA Profile

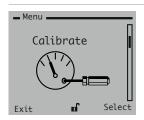
## Foundation Fieldbus version

Node Address Device Tag Manuf. ID Device Type Device Revision Simulation



# Toroidal conductivity menus




Level

### Toroidal conductivity

Language Measurement Type Concentration Solution

- Concentration Units
- Concentration Curve Name Temperature Units

Operator page 1



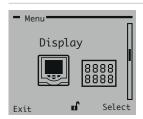
Sensor Setup

- Menu -

PV Zero Calibration PV Span Calibration Temperature Calibration Hold Output (HART only) Edit Calibration Restore Defaults

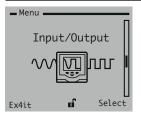



- Concentration Solution
- Concentration Units
- Conductivity Units
- Concentration Curve Name
- Concentration Curve Table Temperature Units


Temperature Compensation Type

- Manual Temperature
- Auto Temperature Compensation Option 0
  - Temperature Compensation Coefficient
  - User Defined Temperature Compensation Curve

Reference Temperature Temperature Sensor Type Detect Temperature Sensor




Security Setup PDM Compatibility (HART only) Reset to defaults



Operator Page 1 Operator Page 2 Contrast Language

#### Level **Toroidal conductivity**



Engineering Range Low Engineering Range High Damping Fault Current (HART only) Output Type (HART only) Function Gen Table (HART only) Trim 4mA (HART only) Trim 20mA (HART only) Loop Test (HART only)



Sensor Diagnostics Diagnostic Status



#### **HART version:**

Device Address HART Tag HART Description Message Manuf. ID Last Command HART Revision Resp. Preamble Loop Current Mode

#### PA version:

Slave Address Device Tag Ident No. Selector Manuf. ID Device Type PA Profile

## Foundation Fieldbus version

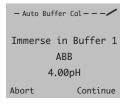
Node Address Device Tag Manuf. ID Device Type Device Revision Simulation



# 11 Calibration

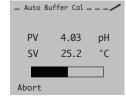
# pH sensor calibration

### **Auto Buffer Cal**


Performs a 2 point calibration using 2 pre-defined buffer solutions – see Auto Buffer Setup, page 24.

Available only if Measurement Type = pH.

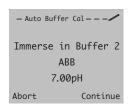
### 1 Immerse in Buffer 1


The details of buffer solution 1 are displayed.

Immerse the sensor in the buffer solution and press  $\overline{\mathbb{Z}}$  to continue.

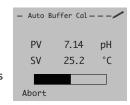


# 2 Monitoring (Buffer 1)


Live process values are displayed. The progress of the process value stability check is indicated on the progress bar. The procedure moves automatically to the next stage upon completion.

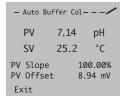


### 3 Immerse in Buffer 2


The details of buffer solution 2 are displayed.

Immerse the sensor in the buffer solution and press  $\slashed{p}$  to continue.




### 4 Monitoring (Buffer 2)

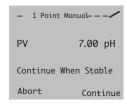
Live process values are displayed. The progress of the process value stability check is indicated on the progress bar. The procedure moves automatically to the next stage upon completion.



#### 5 Completion

Following a successful calibration the calculated coefficients are displayed.





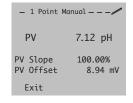

## 1-point manual calibration

Performs a manual calibration (Offset adjustment) at a single reference point.

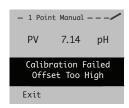

### 1 Wait for stable reading

Monitor the process value and continue ( ) to the next step once the value has stabilized.




### 2 Enter the new value

Enter the desired PV value by pressing the \( \sqrt{key} \) key to move the cursor and the \( \sqrt{v} \) keys to change the value. When the new value has been entered press the \( \sqrt{V} \) key to continue.

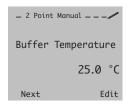



### 3 Completion

Following a successful calibration the calculated coefficients are displayed.

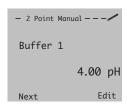


Following an unsuccessful calibration the reason for failure is displayed.



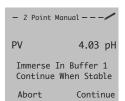

### 2-point manual calibration

Performs a 2-point calibration using 2 pre-defined buffer solutions.


### 1 Buffer temperature

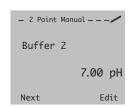
The temperature of the buffer solutions is displayed. The temperature can be edited by pressing the  $\mathcal{F}$  key. When the buffer temperature is correct press the  $\mathbb{T}$  key to continue.




### 2 Buffer 1 value

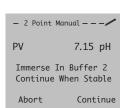
The value of the  $1^{\rm st}$  buffer solution is displayed. The value can be edited by pressing the  $\overline{\mathscr{V}}$  key. When the buffer value is correct press the  $\overline{\mathbb{Q}}$  key to continue.




# Wait for stable reading – 1<sup>st</sup> buffer solution

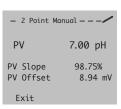
Immerse the sensor in the buffer solution, monitor the process value and continue  $\slashed{F}$  to the next step once the value has stabilized.




### 4 Buffer 2 value

The value of the 2<sup>nd</sup> buffer solution is displayed. The value can be edited by pressing the  $\mathcal{V}$  key. When the buffer value is correct press the  $\mathbb{V}$  key to continue.




# Wait for stable reading – 2nd buffer solution

Immerse the sensor in the buffer solution, monitor the process value and continue  $\mathcal{F}$  to the next step once the value has stabilized.



### 6 Completion

Following a successful calibration the calculated coefficients are displayed.





# ...11 Calibration

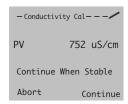
# 2-electrode conductivity sensor calibration

2-electrode conductivity does not normally require wet calibration provided that the sensor constant has been entered correctly and the sensor cable resistance is not significant. The procedure is for a manual calibration at a single reference point. Conductivity Calibration and Concentration Calibration procedures are identical.

### For cell constants from 0.003 to 0.054

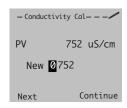
- If the calibration is performed at a conductivity value
   2 μS/cm the PV Offset is recalculated.
- If the calibration is performed at a conductivity value ≥0.2 µS/cm the PV Slope is recalculated.

### For cell constants from 0.055 to 0.299


- If the calibration is performed at a conductivity value  $<1 \,\mu\text{S/cm}$  the PV Offset is recalculated.
- If the calibration is performed at a conductivity value ≥1 μS/cm the PV Slope is recalculated.

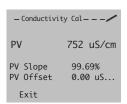
#### For cell constants from 0.3 to 1.999

- If the calibration is performed at a conductivity value  $<5 \,\mu\text{S/cm}$  the PV Offset is recalculated.
- If the calibration is performed at a conductivity value ≥5 μS/cm the PV Slope is recalculated.


### 1 Wait for stable reading

Monitor the process value and continue () to the next step once the value has stabilized.




#### 2 Enter the new value

Enter the desired PV value by pressing the \( \sqrt{key} \) keys to move the cursor and the \( \sqrt{y} \) keys to change the value. When the new value has been entered press the \( \sqrt{y} \) key to continue.



## 3 Completion

Following a successful calibration the calculated coefficients are displayed.



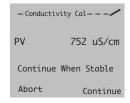


# 4-electrode conductivity sensor calibration

4-electrode conductivity may require wet calibration for the greatest accuracy.

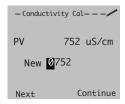
The procedure is for a manual calibration at a single reference point. **Conductivity Calibration** and **Concentration Calibration** procedures are identical.

# For Group A sensors


- If the calibration is performed at a conductivity value  $<1 \,\mu\text{S/cm}$  the PV Offset is recalculated.
- If the calibration is performed at a conductivity value ≥1 µS/cm the PV Slope is recalculated.

### For Group B sensors

- If the calibration is performed at a conductivity value  $<5 \,\mu\text{S/cm}$  the PV Offset is recalculated.
- If the calibration is performed at a conductivity value
   ≥ 5μS/cm the PV Slope is recalculated.


### 1 Wait for stable reading

Monitor the process value and continue ( ) to the next step once the value has stabilized.



## 2 Enter the new value

Enter the desired PV value by pressing the \( \sqrt{key} \) keys to move the cursor and the \( \sqrt{y} \) keys to change the value. When the new value has been entered press the \( \sqrt{y} \) key to continue.



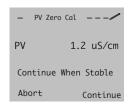
# 3 Completion

Following a successful calibration the calculated coefficients are displayed.



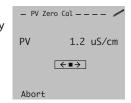
Following an unsuccessful calibration the reason for failure is displayed.




# Toroidal conductivity sensor calibration

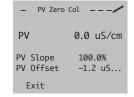
Toroidal conductivity may require wet calibration for the greatest accuracy.

#### PV Zero calibration


# Apply zero and wait for stable reading

Ensure that a zero solution is present at the sensor, monitor the process value and continue ( ) to the next step once the value has stabilized.




### 2 Sampling

The procedure moves automatically to the next stage once the PV has been sampled.

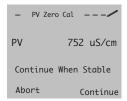


### 3 Completion

Following a successful calibration the calculated coefficients are displayed.

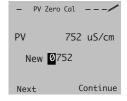





# ...11 Calibration

# ...Toroidal conductivity sensor calibration

# PV Span calibration


# Apply span and wait for stable reading

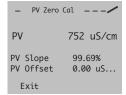
Ensure that a span solution is present at the sensor, monitor the process value and continue ( ) to the next step once the value has stabilized.



### 2 Enter the new value

Enter the desired PV value by pressing the \( \sqrt{key} \) keys to move the cursor and the \( \sqrt{y} \) keys to change the value. When the new value has been entered press the \( \sqrt{y} \) key to continue.




### 3 Sampling

The procedure moves automatically to the next stage once the PV has been sampled.



# 4 Completion

Following a successful calibration the calculated coefficients are displayed.





# 12 Specification

# Operation

Display/LCD (W x H) 75 x 65 mm (3.0 x 2.55 in)

### Mechanical data

Terminal connections

AWG 26 to 14 (0.14 to 2.5 mm<sup>2</sup>)

# Input

### pH/ORP/plon sensor types

pH: Glass, Antimony (Sb)

ORP: (Redox): Platinum (Pt), Gold (Au) pION: Custom user-programmable

# Input impedance

 $>1 \times 10^{13} \Omega$ 

### pH/ORP/plon measurement range and resolution

| Туре | Range                               | Display resolution | Accuracy repeatability |
|------|-------------------------------------|--------------------|------------------------|
| рН   | 0 to 14 pH<br>(–2 to 16 over range) | 0.01 pH            | ±0.01 pH               |
| ORP  | –1500 to 1500 mV                    | 1 mV               | ±1 mV                  |
| pION | –1500 to 1500 mV                    | 1 mV               | ±1 mV                  |

## Dynamic response

<1 second for 90 % step change at 0 seconds damping

# Damping

Configurable: 0 to 99.9 seconds

# Conductivity sensor types

AWT210: ABB 2-electrode conductivity sensors AWT210: ABB 4-electrode conductivity sensors AWT210: ABB toroidal conductivity sensors

# Conductivity measurement range and resolution

AWT210 2-electrode conductivity transmitter:

| Cell<br>constant | Conductivity range | Display<br>resolution | Accuracy<br>repeatability |
|------------------|--------------------|-----------------------|---------------------------|
| 0.01             | 0 to 200 μS/cm     | 0.001 μS/cm           | ±1.0 % of                 |
| 0.1              | 0 to 2000 μS/cm    | 0.01 μS/cm            | measurement range per     |
| 1                | 0 to 20000 μS/cm   | 0.1 μS/cm             | decade                    |

### AWT210 4-electrode conductivity transmitter:

| Sensor<br>group | Conductivity range | Display<br>resolution | Accuracy repeatability |
|-----------------|--------------------|-----------------------|------------------------|
| A               | 0 to 2000 mS/cm    | 0.1 μS/cm             | ±0.5 % of measurement  |
| В               | 0 to 2000 μS/cm    | 0.01 μS/cm            | range per<br>decade    |

# ...Conductivity measurement range and resolution AWT210 toroidal conductivity transmitter:

| Sensor          | Conductivity range | Display<br>resolution | Accuracy<br>repeatability                    |
|-----------------|--------------------|-----------------------|----------------------------------------------|
| ABB<br>toroidal | 0 to 2000 mS/cm    | 1.0 μS/cm             | ±0.5 % of<br>measurement<br>range per decade |

# **Temperature input**

### Temperature element types

Pt100 (2 or 3-wire) Automatic temperature compensation
Pt1000 (2 or 3-wire) Automatic temperature compensation
3k Balco (2 or 3-wire) Automatic temperature compensation
None Manual temperature compensation

### Measurement range and resolution

| Temperature<br>element | Temperature<br>range | Accuracy<br>Repeatability             |
|------------------------|----------------------|---------------------------------------|
| Pt100                  | ,                    | ±0.1 °C                               |
| Pt1000<br>3K Balco     | -20 to 200 °C        | (±0.18 °F)                            |
|                        | (–4 to 392 °F)       | <ul> <li>after calibration</li> </ul> |
| None                   | User-programmable    | N/A                                   |
|                        | 20 to 300 °C         |                                       |
|                        | (-4 to 572°F)        |                                       |

# pH/ORP/plon temperature compensation modes

| Туре | Manual | Automatic<br>Nernstian | with solution | Solution<br>compensation<br>coefficient |
|------|--------|------------------------|---------------|-----------------------------------------|
| рН   | ✓      | <b>√</b>               | <b>√</b>      |                                         |
| ORP  | ✓      |                        |               | ✓                                       |
| pION | ✓      |                        |               | <b>✓</b>                                |

### Conductivity temperature compensation modes

| Temperature element     | AWT210<br>2-electrode | AWT210<br>4-electrode | AWT210<br>toroidal |
|-------------------------|-----------------------|-----------------------|--------------------|
| 0 to 15 % NaOH          | ,                     | /                     | <b>✓</b>           |
| 0 to 20 % NaCl          |                       | ✓                     | ✓                  |
| 0 to 18 % HCl           |                       | ✓                     | <b>✓</b>           |
| 0 to 20 % H₂SO₄         |                       | ✓                     | ✓                  |
| Pure water neutral salt | ✓                     |                       |                    |
| Pure water trace base   | ✓                     |                       |                    |
| Pure water trace acid   | ✓                     |                       |                    |
| User-defined            | ✓                     |                       | <b>✓</b>           |

# ...12 Specification

# Power supply (FF models and PA models)

Supply voltage

9 to 32 V DC (General purpose installations) 9 to 24V DC (Intrinsically Safe Ex ia)

### Quiescent current

15 mA quiescent current consumption

# Power supply (HART models)

Supply voltage

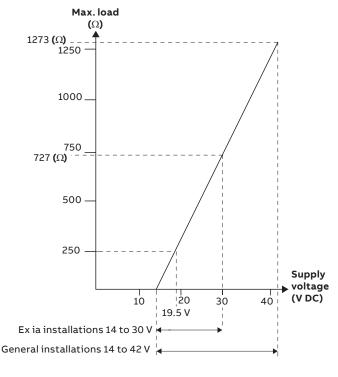
14 to 42 V DC (General purpose installations)

14 to 30 V DC (Intrinsically safe Ex ia installations)

Polarity safe

Lift off voltage: 14 V DC

### Under-voltage protection


Supply voltage < 12 V DC results in < 3.8 mA

### Maximum permissible ripple

Maximum ripple for supply voltage during communication in accordance with HART FSK physical layer specification, version 8.1 (08/1999) section 8.1

### Maximum load

Max. load = (supply voltage - 14 V)/22 mA



With 250  $\Omega$  resistor for HART communication min. supply voltage = 19.5 V DC

# **Output (HART models)**

Configured range

4 to 20 mA, User-programmable across measurement range. Linear and non-linear.

### AWT210 2-electrode pH transmitter:

| Туре | Min. span | Max. span |
|------|-----------|-----------|
| pH   | 1 pH      | 14 pH     |
| ORP  | 100 mV    | 3000 mV   |
| pION | 100 mV    | 3000 mV   |

### AWT210 2-electrode conductivity transmitter:

| Cell constant | Min. span | Max. span   |
|---------------|-----------|-------------|
| 0.01          | 1 μS/cm   | 200 μS/cm   |
| 0.1           | 10 μS/cm  | 2000 μS/cm  |
| 1             | 100 μS/cm | 20000 μS/cm |

### AWT210 4-electrode conductivity transmitter:

| Sensor group | Min. span | Max. span  |
|--------------|-----------|------------|
| A            | 100 μS/cm | 2000 mS/cm |
| В            | 10 μS/cm  | 2000 μS/cm |

### AWT210 toroidal conductivity transmitter:

| Sensor group | Min. span | Max. span  |
|--------------|-----------|------------|
| ABB toroidal | 100 μS/cm | 2000 mS/cm |

### All conductivity models

- when configured for concentration:

| Sensor group | Min. span           | Max. span |
|--------------|---------------------|-----------|
| All          | 5 % when configured | 2000      |

### Dynamic range

3.8 to 20.5 mA with 3.6 mA low alarm level, 21 mA high alarm level

### **Environmental data**

Operating temperature

-20 to 60 °C (-4 to 140 °F)

## Humidity

< 95 % RH non-condensing

### Storage temperature

-40 to 70 °C (-40 to 158 °F)

### Vibration

IEC 60068-2-6 Test FC: vibration, sinusoidal

# Approvals, certification and safety

### Factory Mutual (FM) Intrinsic Safety

Available with polycarbonate & aluminium enclosures

### Intrinsic Safety

- · Class I, Div 1, Group A, B, C, D, T4
- · Class II, Div 1, Group E, F, G, T4
- Fxia

### Enclosure type/ingress protection classification

4X\*/IP66

### Ambient temperature range

• -25 °C =< Ta =< 60 °C

### Factory Mutual (FM) Non-incendive

Available with aluminium enclosure only

#### Non-incendive

- Class I, Div 2, Group A, B, C, D, T4
- Class II, Div 2, Group F, G, T4
- Class III

## Enclosure type/ingress protection classification

4X\*/IP66

### Ambient temperature range

• -25 °C =< Ta =< 60 °C

# Canadian Standards Authority (CSA) Intrinsic Safety

Available with polycarbonate & aluminium enclosures

### Intrinsic Safety

- · Class I, Div 1, Group A, B, C, D, T4
- · Class II, Div 1, Group E, F, G, T4
- Exia

### Enclosure type/ingress protection classification

4X\*/IP66

# Ambient temperature range

• -25 °C =< Ta =< 60 °C

### Canadian Standards Authority (CSA) Non-incendive

Available with aluminium enclosure only

# Non-incendive

- Class I, Div 2, Group A, B, C, D, T4
- · Class II, Div 2, Group F, G, T4
- Class III

### Enclosure type/ingress protection classification

4X\*/IP66

# Ambient temperature range

• -25 °C =< Ta =< 60 °C

### **ATEX Intrinsic Safety**

Available with polycarbonate & aluminium enclosures

#### Intrinsic Safety

• II 1G Ex ia IIC T4 Ga when used with appropriate barriers

### Ingress protection classification

IP66

## Ambient temperature range

• -20 °C =< Ta =< 60 °C

### **IECEx Intrinsic Safety**

Available with polycarbonate & aluminium enclosures

#### Intrinsic Safety

• II 2G Ex ia IIC T4 Ga when used with appropriate barriers

### Ingress protection classification

IP66

## Ambient temperature range

• -20 °C =< Ta =< 60 °C

### **EMC**

# Emissions and immunity

Meets requirements of IEC61326 for an industrial environment.

\*4X Hosedown self-assessed not approved by 3rd party.

DS/AWT210-EN Rev. E

# 13 Spare parts

# **Communications module assemblies**

| Part number                                           | Description                           |  |
|-------------------------------------------------------|---------------------------------------|--|
| 3KXA877210L0051<br>3KXA877210L0052<br>3KXA877210L0053 | HART module<br>PA module<br>FF module |  |

# **Mounting kits**

# Panel-mount kit

| Part number     | Description                                                           |  |
|-----------------|-----------------------------------------------------------------------|--|
| 3KXA877210L0101 | Panel-mount kit,<br>including fixings,<br>flanges, clamps<br>and seal |  |

# Sensor module assemblies

| Part number                                           | Description                                                                                        |          |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|
| 3KXA877210L0014                                       | pH/ORP module for use with analog sensors                                                          |          |
| 3KXA877210L0013<br>3KXA877210L0011<br>3KXA877210L0012 | 2-electrode conductivity module<br>4-electrode conductivity module<br>toroidal conductivity module |          |
|                                                       |                                                                                                    | 00000000 |

# Pipe-mount kit

| Part number     | Description                                                                                              |  |
|-----------------|----------------------------------------------------------------------------------------------------------|--|
| 3KXA877210L0102 | Pipe-mount kit,<br>including pipe-<br>mount adaptor<br>plate, brackets<br>and fixings<br>(excludes pipe) |  |

# Main case assemblies

| Part number    | Description                                                        |          |
|----------------|--------------------------------------------------------------------|----------|
| AWT210A1Y0Y0Y0 | Polycarbonate case assembly:<br>CE label                           | $\wedge$ |
| AWT210A1Y0Y0E5 | Polycarbonate case assembly:<br>ATEX/IECEx label –<br>FM/CSA label |          |
| AWT210A2Y0Y0Y0 | Aluminium case assembly:<br>CE label                               |          |
| AWT210A2Y0Y0E6 | Aluminium case assembly:<br>ATEX/IECEx label –<br>FM/CSA label     |          |

# Wall-mount kit

| Part number     | Description    |  |
|-----------------|----------------|--|
| 3KXA877210L0105 | Wall-mount kit |  |

# **Gland packs**

# Glands (packs of 2)

|                 | •                       |     |              |
|-----------------|-------------------------|-----|--------------|
| Part number     | Description             |     |              |
| 3KXA877210L0112 | M16 standard gland      |     |              |
| 3KXA877210L0115 | M16 Exe gland           |     |              |
| 3KXA877210L0111 | M20 standard gland      |     |              |
| 3KXA877210L0114 | M20 Exe gland           |     |              |
| 3KXA877210L0113 | ½ in NPT standard gland | M16 | M20   ½ in   |
| 3KXA877210L0116 | ½ in NPT Exe gland      | 10  | 5   72   111 |

# Weathershield kit

### Weathershield kit

| Part number     | Description                                          |         |
|-----------------|------------------------------------------------------|---------|
| 3KXA877210L0103 | Weathershield kit<br>(suitable for<br>AWT210/AWT420) | , o o b |

# Weathershield and pipe-mount kit

| Part number     | Description                                                   |
|-----------------|---------------------------------------------------------------|
| 3KXA877210L0104 | Weathershield and pipe-mount kit (suitable for AWT210/AWT420) |

# **Acknowledgments**

- Fieldbus is a registered trademark of the Fieldbus Foundation
- HART is a registered trademark of the FieldComm Group
- Modbus is a registered trademark of Schneider Electric USA Inc.
- PROFIBUS is a registered trademark of PROFIBUS organization

# **Notes**

...Notes



\_

# ABB Limited Measurement & Analytics

Oldends Lane, Stonehouse Gloucestershire, GL10 3TA

Tel: +44 (0)1453 826 661 Fax: +44 (0)1453 829 671

Email: instrumentation@gb.abb.com

ABB Inc.

### **Measurement & Analytics**

125 E. County Line Road Warminster, PA 18974 USA

Tel: +1 215 674 6000

Fax: +1 215 674 7183

abb.com/measurement

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.