Data sheet DS/PUV3402LED/PIR3502 Applications-EN

PUV3402 LED and PIR3502 - Applications Multiwave Photometers

Measurement made easy

ABB PUV3402 LED, PIR3502, PFO3372 process photometers provide on-line measurements of gas or liquid components, in simple or complex process streams for:

- Process Efficiency
- Catalyst Protection
- Product Quality
- Environmental Concerns
- Safety
- Process Control

ABB process photometers provide reliable performance in the petrochemical, chemical, refining, gas processing and product pipeline industries.

These lists provide a general reference for determining potential IR and UV applications. Other considerations will be the remaining stream matrix, stream temperature, stream pressure, and stream phase. The sample must be homogeneous, single phase in order to apply the method. Please provide the detailed information on your application to our ABB sales group so that application engineers can determine the feasibility of your application.

Field proven PUV3402 and PIR3502 applications

This chart is a partial listing of field-proven applications. These applications are grouped by process. Measured components and key benefits are indexed by each applications.

Process	Measurement	Benefits	IR/UV
Acid Gas Scrubbers	Sodium Hydroxide 0 –15 %	Improved scrubber efficiency and reduced cost	IR
Acetic Acid	CO 80 –100% in Reactor Feed	Maximize process yield	IR
	Water 0 –20% in Reactor Outlet	Distillation tower control	IR
		2nd half of distillation tower control and determining expected life of drying column	IR
	Water 0 −1500 ppm in Drying Column Outlet	Drying column efficiency	IR
	*Methyl lodide 0 –1000 ppm	Scrubber efficiency and safety	UV
Ammonia	CO 0 -500ppm	Catalyst protection	IR
	CH4 0-0.5%	Safety	IR
Area Monitoring	Ethyl Benzene 0 -200 ppm,	Safety, leak detection	IR
	Styrene 0 –100 ppm,		IR
	Isooctane 0 -2500 ppm,		IR
	Divinylbenzene 0 –300 ppm		IR
Crude Unit	ASTM color 0 – 8	Product quality	IR
Ethylene	Acetylene 0 –2%	Hydrogenation reactor inlet continuous control	IR
	Acetylene 0 – 0.5%	Hydrogenation reactor mid-bed continuous control	IR
Ethylene Dichloride	CO 0 -10%, CO2 0-5%, and Ethylene 0 -5%	Process efficiency and safety	IR
	*Chlorine 0 -2000 ppm in EDC with Sparger System	Process efficiency	UV
Maleic Anhydride	CO 0 -2.5%, CO2 0-2.5%, Butane 0 -0.5%, and Maleic Anhydride 0 -2%	Reactor outlet – process efficiency	IR
	Butane 0 -2% and Water Vapor 0 -5%	Reactor inlet – LEL control	IR
Phosgene	CO 0 -2.5%, CO2 0-2.5%, Butane CO 0 -10%	Process control	IR
	*Chlorine 0 –200 ppm	Process control	UV
	Phosgene 0 –100 ppm	Safety	IR
Product Pipeline	CO2 0-1000 ppm	Prevent freezing of natural gas lines	IR
Sulfur Recovery	H2S 0 -100%, CO2 0-100%,	Acid gas feed Forward control	IR
	H2S 0 -100%, NH3 0-50%,	Sour gas feed	IR
Vinyl Chloride	Water 0 –50 ppm in EDC	Catalyst protection, corrosion protection of reactors	IR
	Vinyl chloride 0 -200 ppm, 0 -2% in HCl	Condenser efficiency	IR

IR absorbing compounds (potential measurements) - partial list

Butadiene (1,3)	Ethyl alcohol	Nitric Acid
Butane (n)	Ethyl chloride	Nitric oxide
Carbon dioxide	Freon-13B	Nitroethane
Carbon monoxide	Freon-14	Nitrogen dioxid
Carbon tetrachloride	Freon-C-318	Nitrogen pento
Chloroform	Hydrazine	Nitromethane
Cyanogen	Hydrogen bromide	Nitropropane (
Cyclopropane	Hydrogen chloride	Nitrosyl chloric
Diazomethane	Hydrogen cyanide	Nitrous Oxide
Dichloroethane	Hydrogen sulfide	Phosgene
(1,1 and 1,2)	Isobutane	Propane
Dichloromethane	Methane	Propylene
Dimethyl amine	Methyl alcohol	Trimethylhydra
Dimethyl ether	Methyl azide	Trimethylamine
Dimethyl hydrazine	Methyl chloride	Vinyl chloride
Ethane	Methyl mercaptan	Water

litric Acid litric oxide Vitroethane Nitrogen dioxide Nitrogen pentoxide Vitromethane Nitropropane (1&2) Nitrosyl chloride Nitrous Oxide hosaene ropane ropylene rimethylhydrazine rimethylamine

UV absorbing compounds (potential measurements) - partial list Acetic acid Hydrogen sulfide Acetone lodine Ammonia Mercury Aniline Methyl mercaptan Anthracene Naphthalene Nickel carbonyl Benzene Bromine Nitrobenzene Carbon disulfide Ozone Carbon tetrachloride Perchloroethane Chlorine Phenol Phosgene Chlorine dioxide Pyridine Chlorophenol (o,m,p) Dioxane Sodium sulfide Ethylbenzene Styrene

Sulfur

Sulfur dioxide

Ferric chloride

Fluorine

Furfural Toluene Hydrogen peroxide Xylene (o, m, p) Hydrogen sulfide Toluene lodine Xylene (o, m, p)

Field-proven multicomponent applications

Multicomponent measurements

- 0-1.2% toluene; 0 -2% tetrahydrofuran and 0 -100% LEL of gas mix (3 components)
- 0-20% CO; 0 -20% CO2; and 0 -5% CH4 (3 components)
- 0-55% propane and 0 -20% propylene (2 components)
- 0-1000 ppm CH4 and 0 -250 ppm ethane in ethylene @ 100 psig (2 components)
- 0-100 ppm CO and 0 -100 ppm CO2 in H2 @ 200 psig (2 components)
- 0-5% CO2; 0 -5% CO; 0 -1% toluene and 0 -1% benzene in air oxidation vent (4 components)
- 0-50 ppm acrylonitrile and 0-50 ppm styrene in air (2 components)
- 0-50 ppm ethylene oxide and 0-50 ppm propylene oxide in air (2 components) 0-70% methyl chloride and 30 -55% methylene chloride (2 components)
- 0-5000 ppm SO2; 0 -2000 ppm NO; 0 -2000 ppm NO2 and 0 -2000 ppm NOx (4 components)
- 0-5000 ppm ethane; 0-5000 ppm ethylene and 0-80%methane (3 components)
- 0-40% CO2; 0 40% CO and 0 -25% water vapor in air (3 components)
- 0-80% ethylene and 0-15% CO2 in mixed HC stream as a vapor (2 components)
- 0-100% CO; 0 60% ethylene; 0 -20% CO2; and 0 -5% ethyl chloride @ 70 psig (4 components)
- 0–1000 ppm water and 0 –5% DMSO in monochlorobenzene (2 components)
- 0-100% ethylene; 0 -10% EDC; 0 -50% HCl; and 0 -20% ethyl chloride (4 components)
- 0-20% propadiene; 0 40% methyl acetylene and 0 60% MAPD (3 components)

Water measurements

- 0-2% water in phenol
- 0-500 ppm water in monochlorobenzene
- 0-50 ppm water in ethylene dichloride
- 0-250 ppm water in chlorine @ 75psig (vapor)
- 0-0.5% water in ethylene diamine
- 0-100 ppm water in vinylidene chloride
- 0-500 ppm water in propylene glycol
- 0-200 ppm water in methyl ethyl ketone (MEK)
- 0-500 ppm water in dimethylacetamide
- 0-200 ppm water in allyl chloride
- 0-0.5% water in acetone
- 0-1500 ppm water in methanol
- 0–100 ppm water in benzene
- 0-300 ppm water in toluene diamine
- 0-1000 ppm water in MEK & alcohols

Various single component measurements

1,3 butadiene 0 - 50%; in isobutene

1,3 butadiene 0 -70%

acetic acid 0 -2%; in acetic anhydride

acetylene 0 -1%; in methane; ethane and ethylene acetylene 0 - 1.5%

ammonia 0 -250 ppm; in air

cis-2-butene 0 -10%; in butadiene

CO2 0-1%; in CH4 and C2H6

CO2 0-1%; in ethane

CO₂ 0-5000 ppm; in ethane

CO2 0-5000 ppm; in propane

cyclohexane 0 -30%; in cyclohexanol

cyclohexanone 0 - 500 ppm; in cyclohexane

ethane 0-10%; in methane and propane

ethylene 0 -2%; in ethane

H2S 0 -15%; in sour fuel gas

hexamethylene imine 0 - 400 ppm

hydrogen cyanide 0 -1%

MEOH 0-20%; in MTBE/TAME

methane 0-6%; in H2 and water vapor

methanol 0 - 40%; in MTBE

methyl bromide 0 -100 ppm in air

propane 0-6%; in propylene propylene 80 -100%

total hydrocarbons 0 –10%; in propylene

total hydrocarbons 0 -300 ppm; as butene-1 vinyl acetate

0-10%; in ethylene

vinyl acetate 0 -10%; in ethylene

vinyl acetate 0 -20%; in ethylene

UV field-proven applications

APHA color 0 – 50

ASTM color 0 – 8 ASTM units benzene 0 –100 ppm; in water

Bisphenol A 0 -25 ppm and 0 - 100 ppm; in water

chlorine 0 -30%; in propane

chlorine 0 -10%; in NaOH+H20

chlorine 0 -2%; in HCl

chlorine 0 -200 ppm; SO2 0-200 ppm; in vent gas (2

components)

chlorine 0 -30%; in propylene

dimethyl aniline 0-2000 ppm; in N2 saturated with water

DMAC 0-1000 ppm; in water

H2S 0 -10%; in H2

H2S 0 - 4%; in N2

Saybolt color -30 to +15

SO2 0-500 ppm

SO2 0-5000 ppm; in stack gas

styrene 0 -20 ppm; butadiene in water total aminobenzenes

as aniline 0 - 50 ppm

total phenols as 2-chlorophenol 0 -25 ppm; in 33% HCl in H20

Contact us

ABB Inc.

Process Automation Analytical Measurements

843 N. Jefferson Street Lewisburg

WV 24901

USA

Tel.: 1 304 647 4358 Fax: 1 304 645 4236 analyzeit@us.abb.com

ABB Limited Process Automation

Oldends Lane Stonehouse Gloucestershire GL10 3TA UK

Tel.: +44 1453 826 661 Fax: +44 1453 829 671 instrumentation@gb.abb.com

ABB (China) Limited **Process Automation**

Universal Plaza 10 Jiuxianqiao Lu Chaoyang District Beijing 100016 P.R. China

Tel.:

+86 10 8456 6688 +86 10 8456 7613 Fax:

china.instrumentation@cn.abb.com

www.abb.com

Note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB.

Copyright© 2015 ABB All rights reserved

9AAK10103A4444

Sales

Service